Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Parasitol Res ; 123(4): 190, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647704

RESUMO

The intracellular protozoan Eimeria tenella is responsible for avian coccidiosis which is characterized by host intestinal damage. During developmental cycle, E. tenella undergoes versatile transitional stages such as oocyst, sporozoites, merozoites, and gametocytes. These developmental transitions involve changes in cell shape and cell size requiring cytoskeletal remodeling and changes in membrane proteins, which may require transcriptional and translational regulations as well as post-translational modification of proteins. Palmitoylation is a post-translational modification (PTM) of protein that orchestrates protein targeting, folding, stability, regulated enzymatic activity and even epigenetic regulation of gene expression. Previous research revealed that protein palmitoylation play essential role in Toxoplasma gondii, Trypanosoma cruzi, Trichomonas vaginalis, and several Plasmodium parasites. Until now, there is little information on the enzymes related to palmitoylation and role of protein acylation or palmitoylation in E. tenella. Therefore, palmitome of the second-generation merozoite of E. tenella was investigated. We identified a total of 2569 palmitoyl-sites that were assigned to 2145 palmitoyl-peptides belonging to 1561 protein-groups that participated in biological processes including parasite morphology, motility and host cell invasion. In addition, RNA biosynthesis, protein biosynthesis, folding, proteasome-ubiquitin degradation, and enzymes involved in PTMs, carbohydrate metabolism, glycan biosynthesis, and mitochondrial respiratory chain as well as vesicle trafficking were identified. The study allowed us to decipher the broad influence of palmitoylation in E. tenella biology, and its potential roles in the pathobiology of E. tenella infection. Raw data are publicly available at iProX with the dataset identifier PXD045061.


Assuntos
Eimeria tenella , Lipoilação , Merozoítos , Proteínas de Protozoários , Eimeria tenella/genética , Eimeria tenella/metabolismo , Merozoítos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Animais , Processamento de Proteína Pós-Traducional , Coccidiose/parasitologia , Coccidiose/veterinária
2.
Nat Commun ; 15(1): 793, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278808

RESUMO

Sexual development in Toxoplasma gondii is a multistep process that culminates in the production of oocysts, constituting approximately 50% of human infections. However, the molecular mechanisms governing sexual commitment in this parasite remain poorly understood. Here, we demonstrate that the transcription factors AP2XI-2 and AP2XII-1 act as negative regulators, suppressing merozoite-primed pre-sexual commitment during asexual development. Depletion of AP2XI-2 in type II Pru strain induces merogony and production of mature merozoites in an alkaline medium but not in a neutral medium. In contrast, AP2XII-1-depleted Pru strain undergoes several rounds of merogony and produces merozoites in a neutral medium, with more pronounced effects observed under alkaline conditions. Additionally, we identified two additional AP2XI-2-interacting proteins involved in repressing merozoite programming. These findings underscore the intricate regulation of pre-sexual commitment by a network of factors and suggest that AP2XI-2 or AP2XII-1-depleted Pru parasites can serve as a model for studying merogony in vitro.


Assuntos
Toxoplasma , Animais , Humanos , Toxoplasma/metabolismo , Merozoítos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
3.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958655

RESUMO

The development of organoid research has raised new requirements for this methodology. In a previous study, we demonstrated that an emerging protocol achieved the collection, loading, and programmed immunolabeling of mouse intestinal organoids based on a strainer platform. To uncover the applied potential of this novel methodology on organoids from other species, the strainer platform was utilized to characterize the porcine epidemic diarrhea virus (PEDV)-infected porcine intestinal organoid model. Based on a previous study, some steps were changed to improve the efficiency of the assay by simplifying the reagent addition procedure. In addition, we redefined the range of strainer sizes on porcine intestinal organoids, showing that strainers with pore sizes of 40 and 70 µm matched the above protocol well. Notably, the strainer platform was successfully used to label viral proteins, laying the foundation for its application in the visualization of viral infection models. In summary, the potential of the strainer platform for organoid technology was explored further. More extensive exploration of this platform will contribute to the development of organoid technology.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Camundongos , Animais , Suínos , Intestinos , Proteínas Virais , Organoides , Diarreia
4.
Infect Dis Poverty ; 12(1): 72, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563679

RESUMO

BACKGROUND: In the normal life cycle of the parasite (Echinococcus multilocularis) that causes alveolar echinococcosis, domestic and wild carnivores act as definitive hosts, and rodents act as intermediate hosts. The presented study contributes to the research on the distribution and transmission pattern of E. multilocularis in China having identified sheep as an unusual intermediate host taking part in the domestic transmission of alveolar echinococcosis in Gansu Province, China. METHODS: From 2020 to 2021, nine whitish different cyst-like were collected from the liver of sheep in Gansu Province for examination. A near complete mitochondrial (mt) genome and selected nuclear genes were amplified from the cyst-like lesion for identification. To confirm the status of the specimen, comparative analysis with reference sequences, phylogenetic analysis, and network analysis were performed. RESULTS: The isolates displayed ≥ 98.87% similarity to E. multilocularis NADH dehydrogenase sub-unit 1 (nad1) (894 bp) reference sequences deposited in GenBank. Furthermore, amplification of the nad4 and nad2 genes also confirmed all nine samples as E. multilocularis with > 99.30% similarity. Additionally, three nuclear genes, pepck (1545 bp), elp-exons VII and VIII (566 bp), and elp-exon IX (256 bp), were successfully amplified and sequenced for one of the isolates with 98.42% similarity, confirming the isolates were correctly identified as E. multilocularis. Network analysis also correctly placed the isolates with other E. multilocularis. CONCLUSIONS: As a result of the discovery of E. multilocularis in an unusual intermediate host, which is considered to have the highest zoonotic potential, the result clearly demonstrated the necessity for expanded surveillance in the area.


Assuntos
Cistos , Echinococcus multilocularis , Animais , Ovinos/genética , Echinococcus multilocularis/genética , Filogenia , China/epidemiologia , DNA
5.
Parasitology ; 150(9): 813-820, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37475454

RESUMO

Echinococcus shiquicus is peculiar to the Qinghai­Tibet plateau of China. Research on this parasite has mainly focused on epidemiological surveys and life cycle studies. So far, limited laboratory studies have been reported. Here, experimental infection of E. shiquicus metacestode in BALB/c mice and Mongolian jirds (Meriones unguiculatus) was carried out to establish alternative laboratory animal models. Intraperitoneal inoculation of metacestode material containing protoscoleces (PSCs) obtained from infected plateau pikas were conducted on BALB/c mice. Furthermore, metacestode material without PSCs deriving from infected BALB/c mice was intraperitoneally inoculated to Mongolian jirds. Experimental animals were dissected for macroscopic and histopathological examination. The growth of cysts in BALB/c mice was infiltrative, and they invaded the murine entire body. Most of the metacestode cysts were multicystic, but a few were unilocular. The cysts contained sterile vesicles, which had no PSCs. The metacestode materials were able to successfully infect new mice. In the jirds model, E. shiquicus cysts were typically formed freely in the peritoneal cavity; the majority of these cysts were free while a small portion adhered loosely to nearby organs. The proportion of fertile cysts was high, and contained many PSCs. The PSCs produced in Mongolian jirds also successfully infected new ones, which confirms that jirds can serve as an alternative experimental intermediate host. In conclusion, a laboratory animal infection was successfully established for E. shiquicus using BALB/c mice and Mongolian jirds. These results provide new models for the in-depth study of Echinococcus metacestode survival strategy, host interactions and immune escape mechanism.


Assuntos
Coinfecção , Cistos , Equinococose , Echinococcus , Lagomorpha , Camundongos , Animais , Gerbillinae , Equinococose/parasitologia , Camundongos Endogâmicos BALB C , Lagomorpha/parasitologia
6.
Parasitol Res ; 122(5): 1107-1126, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933066

RESUMO

The identification of additional Echinococcus granulosus sensu lato (s.l.) complex species/genotypes in recent years raises the possibility that there might be more variation among this species in China than is currently understood. The aim of this study was to explore intra- and inter-species variation and population structure of Echinococcus species isolated from sheep in three areas of Western China. Of the isolates, 317, 322, and 326 were successfully amplified and sequenced for cox1, nad1, and nad5 genes, respectively. BLAST analysis revealed that the majority of the isolates were E. granulosus s.s., and using the cox1, nad1, and nad5 genes, respectively, 17, 14, and 11 isolates corresponded to Elodea canadensis (genotype G6/G7). In the three study areas, G1 genotypes were the most prevalent. There were 233 mutation sites along with 129 parsimony informative sites. A transition/transversion ratio of 7.5, 8, and 3.25, respectively, for cox1, nad1, and nad5 genes was obtained. Every mitochondrial gene had intraspecific variations, which were represented in a star-like network with a major haplotype with observable mutations from other distant and minor haplotypes. The Tajima's D value was significantly negative in all populations, indicating a substantial divergence from neutrality and supporting the demographic expansion of E. granulosus s.s. in the study areas. The phylogeny inferred by the maximum likelihood (ML) method using nucleotide sequences of cox1-nad1-nad5 further confirmed their identity. The nodes assigned to the G1, G3, and G6 clades as well as the reference sequences utilized had maximal posterior probability values (1.00). In conclusion, our study confirms the existence of a significant major haplotype of E. granulosus s.s. where G1 is the predominant genotype causing of CE in both livestock and humans in China.


Assuntos
Equinococose , Echinococcus granulosus , Animais , Humanos , Ovinos , Echinococcus granulosus/genética , Tibet , Equinococose/epidemiologia , Equinococose/veterinária , China , Genótipo , Haplótipos , Mutação , Filogenia , Variação Genética
7.
Zoonoses Public Health ; 69(8): 938-943, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36345967

RESUMO

Minks and brown rats are reservoir hosts for many endoparasites including those of the genus Trichinella, a group of parasite nematodes with a worldwide distribution. However, little is known about the prevalence of Trichinella sp. infection in the American mink (Neovison vison) and rats (Rattus norvegicus) in China. Therefore, we aimed to examine the prevalence of Trichinella sp. infection in farmed minks in Weihai city, Shandong province, China and infer the possible route for Trichinella transmission to farmed American minks. In total, 289 muscle samples from minks and 102 carcasses of rats were collected from Weihai City. The appearance of Trichinella sp. was examined using the pooled artificial HCl-pepsin digestion method. The results showed that muscle larvae were detected in 20 of 289 minks (6.92%) and 2 of 102 synanthropic rats (1.96%). The larval density of Trichinella sp. in mink samples ranged from 0.025 to 0.815 larvae per gram (lpg), while the average larval burden in rats was 0.17 lpg. The isolates derived from minks and rats were identified at the species level using multiplex polymerase chain reaction (PCR), which revealed that the size of the two PCR products matched that of T. spiralis at 173 bp. Furthermore, sequence analysis showed 100% identity of the 5S rDNA inter-gene spacer regions of the two isolates to that of T. spiralis. This study presents a novel report of T. spiralis-mediated infection in minks and synanthropic rats in China. We highlight the vulnerability of farmed minks to Trichinella infection through exposure to synanthropic rats, which may raise a public health concern of potential zoonotic risks for domestic animals.


Assuntos
Doenças dos Roedores , Trichinella spiralis , Trichinella , Triquinelose , Animais , Ratos , Vison , Prevalência , Triquinelose/epidemiologia , Triquinelose/veterinária , Triquinelose/parasitologia , China/epidemiologia , Larva , Doenças dos Roedores/epidemiologia
8.
PLoS Negl Trop Dis ; 16(5): e0010435, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639780

RESUMO

Almost all Echinococcus multilocularis (Em) infections occur in the liver of the intermediate host, causing a lethal zoonotic helminthic disease, alveolar echinococcosis (AE). However, the long non-coding RNAs (lncRNAs) expression profiles of the host and the potential regulatory function of lncRNA during Em infection are poorly understood. In this study, the profiles of lncRNAs and mRNAs in the liver of mice at different time points after Em infection were explored by microarray. Thirty-one differentially expressed mRNAs (DEMs) and 68 differentially expressed lncRNAs (DELs) were found continuously dysregulated. These DEMs were notably enriched in "antigen processing and presentation", "Th1 and Th2 cell differentiation" and "Th17 cell differentiation" pathways. The potential predicted function of DELs revealed that most DELs might influence Th17 cell differentiation and TGF-ß/Smad pathway of host by trans-regulating SMAD3, STAT1, and early growth response (EGR) genes. At 30 days post-infection (dpi), up-regulated DEMs were enriched in Toll-like and RIG-I-like receptor signaling pathways, which were validated by qRT-PCR, Western blotting and downstream cytokines detection. Furthermore, flow cytometric analysis and serum levels of the corresponding cytokines confirmed the changes in cell-mediated immunity in host during Em infection that showed Th1 and Th17-type CD4+ T-cells were predominant at the early infection stage whereas Th2-type CD4+ T-cells were significantly higher at the middle/late stage. Collectively, our study revealed the potential regulatory functions of lncRNAs in modulating host Th cell subsets and provide novel clues in understanding the influence of Em infection on host innate and adaptive immune response.


Assuntos
Echinococcus multilocularis , RNA Longo não Codificante , Animais , Citocinas/metabolismo , Equinococose , Fígado/metabolismo , Camundongos , RNA Longo não Codificante/genética , RNA Mensageiro/genética
9.
Front Pharmacol ; 13: 841941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370702

RESUMO

Toxoplasmosis, caused by Toxoplasma gondii, is a common disease worldwide and could be severe and even fatal in immunocompromised individuals and fetuses. Limitation in current available treatment options drives the need to develop novel therapeutics. This study assessed the anti-T. gondii potential of 103 marine natural products. A luminescence-based ß-galactosidase activity assay was used to screen the marine natural products library. Afterward, those compounds that displayed over 70% parasite inhibition ratio were further chosen to assess their cytotoxicity. Compounds exhibiting low cytotoxicity (≥80% cell viability) were applied to evaluate the inhibition efficacy on discrete steps of the T. gondii lytic cycle, including invasion, intracellular growth, and egress abilities as well as the cell cycle. We found that both estradiol benzoate and octyl gallate caused >70% inhibition of tachyzoite growth with IC50 values of 4.41 ± 0.94 and 5.66 ± 0.35 µM, respectively, and displayed low cytotoxicity with TD50 values of 34.11 ± 2.86 and 26.4 ± 0.98 µM, respectively. Despite their defects in inhibition of invasion and egress of tachyzoite, the two compounds markedly inhibited the tachyzoite intracellular replication. Flow cytometric analyses further suggested that the anti-T. gondii activity of estradiol benzoate, rather than octyl gallate, may be linked to halting cell cycle progression of tachyzoite from G1 to S phase. Taken together, these findings suggest that both estradiol benzoate and octyl gallate are potential inhibitors for anti-T. gondii infection and support the further exploration of marine natural products as a thinkable source of alternative and active agents against T. gondii.

10.
Front Microbiol ; 13: 747484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211102

RESUMO

The Cyclophyllidea comprises the most species-rich order of tapeworms (Platyhelminthes, Cestoda) and includes species with some of the most severe health impact on wildlife, livestock, and humans. We collected seven Cyclophyllidea specimens from rodents in Qinghai-Tibet Plateau (QTP) and its surrounding mountain systems, of which four specimens in QTP were unsequenced, representing "putative new species." Their complete mitochondrial (mt) genomes were sequenced and annotated. Phylogenetic reconstruction of partial 28S rDNA, cox1 and nad1 datasets provided high bootstrap frequency support for the categorization of three "putative new species," assigning each, respectively, to the genera Mesocestoides, Paranoplocephala, and Mosgovoyia, and revealing that some species and families in these three datasets, which contain 291 species from nine families, may require taxonomic revision. The partial 18S rDNA phylogeny of 29 species from Taeniidae provided high bootstrap frequency support for the categorization of the "putative new species" in the genus Hydatigera. Combined with the current investigation, the other three known Taeniidae species found in this study were Taenia caixuepengi, T. crassiceps, and Versteria mustelae and may be widely distributed in western China. Estimates of divergence time based on cox1 + nad1 fragment and mt protein-coding genes (PCGs) showed that the differentiation rate of Cyclophyllidea species was strongly associated with the rate of change in the biogeographic scenarios, likely caused by the uplift of the QTP; i.e., species differentiation of Cyclophyllidea might be driven by host-parasite co-evolution caused by the uplift of QTP. We propose an "out of QTP" hypothesis for the radiation of these cyclophyllidean tapeworms.

11.
Transbound Emerg Dis ; 69(4): 2390-2397, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33991179

RESUMO

Taenia hydatigena is a widespread tapeworm of canids (primarily dogs) that causes cysticercosis in ruminants (domestic and wild) and manifests as depression and weakness secondary to various hepatic damages and sometimes mortality in young animals, although, commonly encountered cases are asymptomatic. In most taeniids, genetic polymorphism has been found to impact host preferences, distribution, disease epidemiology and management. Recently, we identified two main mitochondrial lineages of T. hydatigena in China, and here, we examined the mitochondrial nad4-nad5 genes of T. hydatigena from China, Nigeria, Pakistan and Sudan to assess the intraspecies variation of isolates from these countries and also the distribution of the distinct mitochondrial groups. In addition to China, haplogroup B variant was found in Pakistan, while haplogroup A demonstrated a widespread distribution. We then designed a PCR-restriction fragment length polymorphism (PCR-RFLP) assay using XmiI (AccI) and RsaI (AfaI) restriction enzymes to differentiate members of both haplogroups. This result provides more molecular evidence supporting the existence of distinct mitochondrial variants of T. hydatigena. The epidemiological significance of these different mitochondrial groups remains to be explored further. The current PCR-RFLP assay offers a useful molecular approach for investigating the genetic population structure of T. hydatigena in enzootic regions and in identifying/discriminating the different mitochondrial groups (haplogroups A and B).


Assuntos
Cisticercose , Doenças do Cão , Taenia , Animais , Cisticercose/epidemiologia , Cisticercose/veterinária , Cães , Técnicas de Amplificação de Ácido Nucleico/veterinária , Reação em Cadeia da Polimerase/veterinária , Polimorfismo de Fragmento de Restrição , Taenia/genética
12.
Parasit Vectors ; 14(1): 447, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488862

RESUMO

BACKGROUND: Tapeworm infections are among the tropical neglected parasitic diseases endemically occurring in Ethiopia. This systematic review and meta-analysis aims at estimating the pooled prevalence and distribution of Taenia and Echinococcus infections in humans and animals from reports from Ethiopia. METHODS: The systematic search was conducted in four bibliographic databases (PubMed, Google Scholar, Africa Journal Online and Science Direct). Additional data were retrieved from grey literature. Studies that met the inclusion criteria were considered for the systematic review and meta-analysis. The meta-analysis was conducted using MetaXL add-in for Microsoft Excel. Heterogeneity and inconsistency were evaluated using Cochran's Q and I2 statistics, respectively. RESULTS: The study provides a country-based database of Taenia and Echinococcus infections consisting of 311 datasets from 201 publications which were mostly abattoir surveys; of these, 251 datasets were subjected to meta-analysis. Most of the studies were from Oromia (32.8%) followed by Amhara (22.9%) regional states. The pooled prevalence of cystic echinococcosis in intermediate and accidental hosts was calculated as 22% (95% CI 18-26%) and high study variability (Q = 24,420.65, I2 = 100%, P = 0.000). Moreover, a pooled prevalence of Echinococcus infections in final hosts was calculated as 33% (95% CI 20-48%) and low study variability (Q = 17.24, I2 = 65%, P = 0.001). Similarly, study subjects (human, cattle, sheep, goat and wolf) were infected by Taenia spp. with pooled prevalence of 3% (95% CI 2-4%) and moderate study variability (Q = 279.07, I2 = 89, P = 0.000). Meanwhile, the pooled prevalence of Taenia hydatigena, T. ovis and T. multiceps infections in intermediate hosts were calculated as 38%, 14% and 5%, respectively. The random effect meta-analysis of bovine cysticercosis showed a pooled prevalence of 7% (95% CI 5-9%) and high study variability was of (Q = 4458.76; I2 = 99%, P = 0.000). Significant differences in prevalence of Taenia and Echinococcus infections between study sites or different livestock origins have been reported. CONCLUSION: The study evidenced a comprehensive dataset on the prevalence and distribution of Taenia and Echinococcus infections at different interfaces by regions and hosts and hence can aid in the design of more effective control strategies.


Assuntos
Equinococose/epidemiologia , Taenia/isolamento & purificação , Teníase/epidemiologia , Matadouros , Animais , Bovinos , Etiópia/epidemiologia , Cabras/parasitologia , Humanos , Gado/parasitologia , Prevalência , Taenia/genética
13.
Front Vet Sci ; 8: 677045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291101

RESUMO

Cerebral coenurosis, caused by the larvae of Taenia multiceps (Coenurus cerebralis), is a fatal central nervous system disease in sheep and other herbivores and occasionally humans. Comparative transcriptomic profiles of the developmental stages of the parasite remain unknown. In this study, RNA sequencing was used to determine the transcriptome profiles of different stages of the life cycle of T. multiceps, including Oncosphere, Coenurus cerebralis (Pro with Cyst), and Adult (Adu), as well as scolex-neck proglottids (Snp), immature-mature proglottids (Imp), and gravid proglottids (Grp) of the adult stage. A total of 42.6 Gb (average 6.1 Gb) Illumina pair-end reads with a 125-bp read length were generated for seven samples. The total number of differentially expressed genes (DEGs) in the various life stages ranged from 2,577 to 3,879; however, for the tissues of the adult worm, the range was from 1,229 to 1,939. Kyoto Encyclopedia of Genes and Genomes analysis showed that the DEGs mainly participated in cellular and metabolic processes, binding and catalytic activity, genetic information processing, and environmental information processing. In addition, a large number of genes related to development and parasite-host interaction were identified. Quantitative reverse transcription-polymerase chain reaction confirmed that the levels of 28 selected DEGs were consistent with those determined using RNA sequencing. The present study provides insights into the mechanisms of the development and parasitic life of T. multiceps.

14.
Front Microbiol ; 12: 647119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833747

RESUMO

The larva of Taeniidae species can infect a wide range of mammals, causing major public health and food safety hazards worldwide. The Qinghai-Tibet Plateau (QTP), a biodiversity hotspot, is home to many species of rodents, which act as the critical intermediate hosts of many Taeniidae species. In this study, we identified two new larvae of Taenia spp., named T. caixuepengi and T. tianguangfui, collected from the plateau pika (Ochotona curzoniae) and the Qinghai vole (Neodon fuscus), respectively, in QTP, and their mitochondrial genomes were sequenced and annotated. Phylogenetic trees based on the mitochondrial genome showed that T. caixuepengi has the closest genetic relationship with T. pisiformis, while T. tianguangfui was contained in a monophyletic group with T. crassiceps, T. twitchelli, and T. martis. Biogeographic scenarios analysis based on split time speculated that the speciation of T. caixuepengi (∼5.49 Mya) is due to host switching caused by the evolution of its intermediate host. Although the reason for T. tianguangfui (∼13.11 Mya) speciation is not clear, the analysis suggests that it should be infective to a variety of other rodents following the evolutionary divergence time of its intermediate host and the range of intermediate hosts of its genetically close species. This study confirms the species diversity of Taeniidae in the QTP, and speculates that the uplift of the QTP has not only a profound impact on the biodiversity of plants and animals, but also that of parasites.

15.
Parasitology ; 148(7): 879-886, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33757604

RESUMO

Echinococcus shiquicus is currently limited to the Qinghai­Tibet plateau, a large mountainous region in China. Although the zoonotic potential remains unknown, progress is being made on the distribution and intermediate host range. In this study, we report E. shiquicus within Gansu and Qinghai provinces in regions located not only around the central areas but also the southeast edge of the plateau and describe their genetic relationship with previous isolates from the plateau. From 1879 plateau pikas examined, 2.39% (95% CI 1.79­3.18) were infected with E. shiquicus. The highest prevalence of 10.26% (4.06­23.58) was recorded in Makehe town, Qinghai province. Overall the prevalence was marginally higher in Qinghai (2.5%, CI 1.82­3.43) than in Gansu (2%, CI 1.02­3.89). The cox1 and nad1 genes demonstrated high and low haplotype and nucleotide diversities, respectively. The median-joining network constructed by the cox1­nad1 gene sequences demonstrated a star-like configuration with a median vector (unsampled haplotype) occupying the centre of the network. No peculiar distinction or common haplotype was observed in isolates originating from the different provinces. The presence of E. shiquicus in regions of the southeast and northeast edges of the Qinghai­Tibet plateau and high genetic variation warrants more investigation into the haplotype distribution and genetic polymorphism by exploring more informative DNA regions of the mitochondrial genome to provide epidemiologically useful insight into the population structure of E. shiquicus across the plateau and its axis.


Assuntos
Distribuição Animal , Equinococose/veterinária , Echinococcus/isolamento & purificação , Lagomorpha , Animais , Equinococose/epidemiologia , Equinococose/parasitologia , Dinâmica Populacional , Prevalência , Tibet
16.
Parasitol Res ; 120(4): 1481-1487, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33537839

RESUMO

Protists of the Blastocystis genus are distributed worldwide and can infect a range of hosts. However, data concerning Blastocystis infection are limited for sika deer and are not available for black bears. Therefore, in the present study, a total of 312 black bears (Ursus thibetanus) from Heilongjiang Province and 760 sika deer (Cervus nippon) from four different northern Chinese provinces were investigated. Blastocystis infection in these animals was detected via PCR amplification of the small subunit rRNA gene in fecal samples. The prevalence of Blastocystis infection in black bears and sika deer was 14.4% (45/312 positive samples) and 0.8% (6/760 positive samples), respectively. Young black bears (18.3%) had a significantly higher Blastocystis prevalence than adult bears (9.1%). The prevalence of Blastocystis was significantly higher in black bears raised outdoors (24.6%) than in bears raised indoors (12.2%). Blastocystis-positive sika deer were only found in Jilin Province (1.3%, 6/480). Female sika deer (0%, 0/61) had a significantly lower Blastocystis prevalence than males (0.9%, 6/699). Sanger sequencing was used to determine the small subunit rRNA gene sequences of the Blastocystis-positive PCR products. A neighbor-joining phylogenetic tree based on the small subunit rRNA gene sequences showed that only Blastocystis subtype (ST)1 was identified in black bears, whereas ST10 and ST14 were found in sika deer. This is the first report of Blastocystis ST1 infection in black bears. These findings also extend the distribution information of Blastocystis subtypes, which will provide a foundation for further study of Blastocystis in different hosts in China.


Assuntos
Infecções por Blastocystis/veterinária , Blastocystis/isolamento & purificação , Cervos/parasitologia , Ursidae/parasitologia , Animais , Blastocystis/classificação , Blastocystis/genética , Infecções por Blastocystis/epidemiologia , Infecções por Blastocystis/parasitologia , China/epidemiologia , DNA de Protozoário/isolamento & purificação , Fezes/parasitologia , Feminino , Masculino , Filogenia , Reação em Cadeia da Polimerase/veterinária , Prevalência , RNA Ribossômico/genética
17.
Parasitology ; 148(3): 311-326, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33092662

RESUMO

Cysticercosis caused by the metacestode larval stage of Taenia hydatigena formerly referred to as Cysticercus tenuicollis is a disease of veterinary importance that constitutes a significant threat to livestock production worldwide, especially in endemic regions due to condemnation of visceral organs and mortality rate of infected young animals. While the genetic diversity among parasites is found to be potentially useful in many areas of research including molecular diagnostics, epidemiology and control, that of T. hydatigena across the globe remains poorly understood. In this study, analysis of the mitochondrial DNA (mtDNA) of adult worms and larval stages of T. hydatigena isolated from dogs, sheep and a wild boar in China showed that the population structure consists of two major haplogroups with very high nucleotide substitutions involving synonymous and non-synonymous changes. Compared with other cestodes such as Echinococcus spp., the genetic variation observed between the haplogroups is sufficient for the assignment of major haplotype or genotype division as both groups showed a total of 166 point-mutation differences between the 12 mitochondrial protein-coding gene sequences. Preliminary analysis of a nuclear protein-coding gene (pepck) did not reveal any peculiar changes between both groups which suggests that these variants may only differ in their mitochondrial makeup.


Assuntos
DNA de Helmintos/genética , DNA Mitocondrial/genética , Taenia/genética , Teníase/veterinária , Sequência de Aminoácidos , Animais , China , DNA de Helmintos/química , DNA de Helmintos/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , Doenças do Cão/parasitologia , Cães , Haplótipos , Larva/genética , Larva/crescimento & desenvolvimento , Filogenia , Alinhamento de Sequência , Ovinos , Doenças dos Ovinos/parasitologia , Carneiro Doméstico , Sus scrofa , Suínos , Doenças dos Suínos/parasitologia , Taenia/crescimento & desenvolvimento , Taenia/metabolismo , Teníase/parasitologia
18.
Front Vet Sci ; 7: 539679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330681

RESUMO

Brucellosis is a highly contagious zoonosis caused by a species under the genus Brucella. A duplex recombinase polymerase amplification (Duplex RPA) assay for the specific detection of Brucella melitensis and Brucella abortus was developed in this study. Primers were designed targeting hypothetical protein genes and membrane transporter genes of B. melitensis and B. abortus, respectively. The newly developed assay was validated for its analytical sensitivity and specificity. Different samples were collected from the Qinghai, Inner Mongolia, and Xinjiang provinces. After DNA extraction, the samples were analyzed by Duplex RPA, real-time PCR, and multiplex AMOS PCR to estimate the prevalence of brucellosis in sheep and yak in West China. The analytical sensitivities of Duplex RPA were 9 × 102 plasmid copies of B. melitensis and 9 × 101 plasmid copies of B. abortus, but by mixing the reaction tubes after 4 min of incubation, the sensitivities were 4 × 100 and 5 × 100 copies of B. melitensis and B. abortus, respectively. There was no cross-reactivity with Brucella suis, Chlamydia abortus, Salmonella typhimurium, Escherichia coli, and Toxoplasma gondii. The screening of field samples by Duplex RPA revealed that the prevalence of B. melitensis in sheep and yak was 75.8% and the prevalence of B. abortus was 4.8%. Multiplex AMOS PCR showed that the prevalence of B. melitensis was 19.3%, and that of B. abortus was 4.8%. It was concluded that the developed Duplex RPA is sensitive and specific to the detection of and differentiation between B. melitensis and B. abortus which will be useful in epidemiological surveillance and in the clinical settings.

19.
Parasit Vectors ; 13(1): 590, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228776

RESUMO

BACKGROUND: Cystic or alveolar echinococcosis caused by the larval stages of Echinococcus spp. is a very severe zoonotic helminth infection. Echinococcus shiquicus is a newly discovered species that has only been reported in the Qinghai and Sichuan provinces of the Qinghai-Tibet plateau, China where, to date, it has only been confirmed in Tibetan foxes and wild small mammal populations of the Tibetan plateau. Information on its genetic and evolutionary diversity is scanty. The aim of this study was to investigate the prevalence of E. shiquicus in plateau pikas (Ochotona curzoniae), a known intermediate host, and to determine the genetic variation and phylogenetic relationship of the E. shiquicus population in the Tibet region of China based on mitochondrial DNA. METHODS: Echinococcus shiquicus samples were collected from Damxung and Nyêmo counties (located in Tibet Autonomous Region, China). The mitochondrial cox1 and nad1 gene sequences were analyzed, and the genetic diversity and epidemiology of E. shiquicus in the region were discussed based on the results. RESULTS: The prevalence of E. shiquicus in pikas in Damxung and Nyêmo counties was 3.95% (6/152) and 6.98% (9/129), respectively. In combination with previous public sequence data, the haplotype analysis revealed 12 haplotypes (H) characterized by two distinct clusters (I and II), and a sequence distance of 99.1-99.9% from the reference haplotype (H1). The diversity and neutrality indices for the entire E. shiquicus populations were: haplotype diversity (Hd) ± standard deviation (SD) 0.862 ± 0.035; nucleotide diversity (Hd ± SD) 0.0056 ± 0.0003; Tajima's D 0.876 (P > 0.05); and Fu's F 6.000 (P > 0.05). CONCLUSIONS: This was the first analysis of the newly discovered E. shiquicus in plateau pikas in the Tibet Autonomous Region of China. The neutrality indices suggest a deficiency of alleles, indicative of a recent population bottleneck.


Assuntos
Equinococose/epidemiologia , Equinococose/veterinária , Echinococcus/genética , Variação Genética , Lagomorpha/parasitologia , Filogenia , Animais , China/epidemiologia , Equinococose/parasitologia , Echinococcus/classificação , Echinococcus/isolamento & purificação , Raposas/parasitologia , Genótipo , Prevalência , Tibet/epidemiologia
20.
Front Immunol ; 11: 2015, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072069

RESUMO

Trichinella infection can induce macrophages into the alternatively activated phenotype, which is primarily associated with the development of a polarized Th2 immune response. In the present study, we examined the immunomodulatory effect of T. spiralis thioredoxin peroxidase-2 (TsTPX2), a protein derived from T. spiralis ES products, in the regulation of Th2 response through direct activation of macrophages. The location of TsTPX2 was detected by immunohistochemistry and immunofluorescence analyses. The immune response in vivo induced by rTsTPX2 was characterized by analyzing the Th2 cytokines and Th1 cytokines in the peripheral blood. The rTsTPX2-activated macrophages (MrTsTPX2) were tested for polarization, their ability to evoke naïve CD4+ T cells, and resistance to the larval infection after adoptive transfer in BALB/c mice. The immunolocalization analysis showed TsTPX2 in cuticles and stichosome of T. spiralis ML. The immunostaining was detected in cuticles and stichosome of T. spiralis Ad3 and ML, as well as in tissue-dwellings around ML after the intestines and muscle tissues of infected mice were incubated with anti-rTsTPX2 antibody. Immunization of BALB/c mice with rTsTPX2 could induce a Th1-suppressing mixed immune response given the increased levels of Th2 cytokines (IL-4 and IL-10) production along with the decreased levels of Th1 cytokines (IFN-γ, IL-12, and TNF-α). In vitro studies showed that rTsTPX2 could directly drive RAW264.7 and peritoneal macrophages to the M2 phenotype. Moreover, MrTsTPX2 could promote CD4+ T cells polarized into Th2 type in vitro. Adoptive transfer of MrTsTPX2 into mice suppressed Th1 responses by enhancing Th2 responses and exhibited a 44.7% reduction in adult worm burden following challenge with T. spiralis infective larval, suggesting that the TsTPX2 is a potential vaccine candidate against trichinosis. Our study showed that TsTPX2 would be at least one of the molecules to switch macrophages into the M2 phenotype during T. spiralis infection, which provides a new therapeutic approach to various inflammatory disorders like allergies or autoimmune diseases.


Assuntos
Proteínas de Helminto/metabolismo , Macrófagos/imunologia , Peroxirredoxinas/metabolismo , Células Th1/imunologia , Células Th2/imunologia , Trichinella spiralis/fisiologia , Triquinelose/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Resistência à Doença , Feminino , Proteínas de Helminto/genética , Imunidade Celular , Imunomodulação , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Peroxirredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...