Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 15: 1213379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649717

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily affecting cognitive functions. However, sensory deficits in AD start to draw attention due to their high prevalence and early onsets which suggest that they could potentially serve as diagnostic biomarkers and even contribute to the disease progression. This literature review examines the sensory deficits and cortical pathological changes observed in visual, auditory, olfactory, and somatosensory systems in AD patients, as well as in various AD animal models. Sensory deficits may emerge at the early stages of AD, or even precede the cognitive decline, which is accompanied by cortical pathological changes including amyloid-beta deposition, tauopathy, gliosis, and alterations in neuronal excitability, synaptic inputs, and functional plasticity. Notably, these changes are more pronounced in sensory association areas and superficial cortical layers, which may explain the relative preservation of basic sensory functions but early display of deficits of higher sensory functions. We propose that sensory impairment and the progression of AD may establish a cyclical relationship that mutually perpetuates each condition. This review highlights the significance of sensory deficits with or without cortical pathological changes in AD and emphasizes the need for further research to develop reliable early detection and intervention through sensory systems.

2.
Nat Commun ; 13(1): 1194, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256596

RESUMO

Valence detection and processing are essential for the survival of animals and their life quality in complex environments. Neural circuits underlying the transformation of external sensory signals into positive valence coding to generate appropriate behavioral responses remain not well-studied. Here, we report that somatostatin (SOM) subtype of GABAergic neurons in the mouse medial septum complex (MS), but not parvalbumin subtype or glutamatergic neurons, specifically encode reward signals and positive valence. Through an ascending pathway from the nucleus of solitary tract and then parabrachial nucleus, the MS SOM neurons receive rewarding taste signals and suppress the lateral habenula. They contribute essentially to appetitive associative learning via their projections to the lateral habenula: learning enhances their responses to reward-predictive sensory cues, and suppressing their responses to either conditioned or unconditioned stimulus impairs acquisition of reward learning. Thus, MS serves as a critical hub for transforming bottom-up sensory signals to mediate appetitive behaviors.


Assuntos
Habenula , Área Tegmentar Ventral , Animais , Comportamento Apetitivo/fisiologia , Neurônios GABAérgicos/metabolismo , Habenula/fisiologia , Camundongos , Recompensa , Somatostatina/metabolismo , Área Tegmentar Ventral/fisiologia
3.
Cereb Cortex ; 29(9): 3796-3812, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30307493

RESUMO

Sparse representation is considered an important coding strategy for cortical processing in various sensory modalities. It remains unclear how cortical sparseness arises and is being regulated. Here, unbiased recordings from primary auditory cortex of awake adult mice revealed salient sparseness in layer (L)2/3, with a majority of excitatory neurons exhibiting no increased spiking in response to each of sound types tested. Sparse representation was not observed in parvalbumin (PV) inhibitory neurons. The nonresponding neurons did receive auditory-evoked synaptic inputs, marked by weaker excitation and lower excitation/inhibition (E/I) ratios than responding cells. Sparse representation arises during development in an experience-dependent manner, accompanied by differential changes of excitatory input strength and a transition from unimodal to bimodal distribution of E/I ratios. Sparseness level could be reduced by suppressing PV or L1 inhibitory neurons. Thus, sparse representation may be dynamically regulated via modulating E/I balance, optimizing cortical representation of the external sensory world.


Assuntos
Potenciais de Ação , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Neurônios/fisiologia , Estimulação Acústica , Animais , Potenciais Evocados Auditivos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Inibição Neural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA