Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675684

RESUMO

Camellia oleifera oil (CO oil) extracted from C. oleifera seeds has a 2300-year consumption history in China. However, there is relatively little research regarding its non-edible uses. This study determined the physicochemical properties of CO oil extracted via direct pressing, identified its main components using GC-MS, and evaluated its antioxidant, moisturizing, and anti-inflammatory activities. The results revealed that CO oil's acid, peroxide, iodine, and saponification values were 1.06 ± 0.031 mg/g, 0.24 ± 0.01 g/100 g, 65.14 ± 8.22 g/100 g, and 180.41 ± 5.60 mg/g, respectively. CO oil's tocopherol, polyphenol, and squalene contents were 82.21 ± 9.07 mg/kg, 181.37 ± 3.76 mg/kg, and 53.39 ± 6.58 mg/kg, respectively; its unsaturated fatty acid (UFA) content was 87.44%, and its saturated fatty acid (SFA) content was 12.56%. CO oil also demonstrated excellent moisture retention properties, anti-inflammatory effects, and certain free radical scavenging. A highly stable CO oil emulsion with competent microbiological detection was developed using formulation optimization. Using CO oil in the emulsion significantly improved the formulation's antioxidant and moisturizing properties compared with those of the emulsion formulation that did not include CO oil. The prepared emulsion was not cytotoxic to cells and could reduce cells' NO content; therefore, it may have potential nutritional value in medicine and cosmetics.


Assuntos
Anti-Inflamatórios , Antioxidantes , Camellia , Óleos de Plantas , Camellia/química , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Humanos , Animais , Camundongos , Cromatografia Gasosa-Espectrometria de Massas
2.
Sci Rep ; 14(1): 1276, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218964

RESUMO

To address the technical limitations of automatic coal and gangue detection technology in fully mechanized top coal caving mining operations, the low radiation level radioactivity measurement method is utilized to assess the degree of coal-gangue mixture in top coal caving process. This approach is based on the distinguishing radiation characteristics of natural γ-rays between coal and gangue. This study analyzed the distribution characteristics of natural γ-rays in coal and rock layers of thick coal seams and the applicability of this method, introduced the basic principle of coal-gangue detection technology based on natural γ-ray, developed the test system about automatic coal-gangue detection, studied the radiation characteristics of coal and gangue, proposed determination model of the coal-gangue mixed degree, combined with the time sequence characteristics of the top coal's releasing flow and the energy spectrum characteristics of different layers of rock, realized the precise coal-gangue detection technology in complex structure thick coal seam with multiple gangue. Field tests were conducted in Lilou, Xiaoyu and Tashan Coal Mine. The test results were well corroborated with the research results and achieved the expected results, which laid the foundation for the field application of intelligent coal mining.

3.
Heliyon ; 9(12): e22383, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076048

RESUMO

Background: Prostate adenocarcinoma is a frequent cancer among men with high incidence and mortality rates. Biomarkers are useful for the treatment of cancers, so we need to explore the regulatory network of prostate adenocarcinoma. Method: The database from University of California Santa Cruz was used to determine expression of messenger RNAs and microRNAs. Weighted correlation network analysis was used for classifying genes. Search Tool for Recurring Instances of Neighboring Genes and Cytoscape were used for the construction of PPI network and selection of hub genes. The microRNAs were predicted in miRactDB. The relations between microRNAs and messenger RNAs were assessed by Statistical Product and Service Solutions. The prognostic value was evaluated through Kaplan-Meier method. Kyoto Encyclopedia of Genes and Genomes, Gene Ontology and Gene Set Enrichment Analysis were used for predicting potential function. Results: 10 hub genes were all overexpressed in tumor tissues compared to normal tissues, but only aurora kinase B and nucleolar and spindle associated protein 1 were both significantly related to disease-free interval and progression-free interval time.Aurora kinase B and nucleolar and spindle associated protein 1 were negatively related to hsa-miR-1-3p, hsa-miR-133a-3p, hsa-miR-133b and hsa-miR-221-3p but positively related to hsa-miR-15b-5p, hsa-miR-21-5p, hsa-miR-106b-5p, hsa-miR-183-5p, hsa-miR-191-5p, hsa-miR-210-3p, hsa-miR-425-5p and hsa-miR-653-5p. All microRNAs except has-miR-653-5p significantly were related to the disease-free interval and progression-free interval time. The functions of microRNAs were enriched in cell cycle. Conclusion: We identified hub messenger RNAs and core microRNAs and established a novel messenger RNA-microRNA network associated with the prognosis of prostate adenocarcinoma.

4.
J Agric Food Chem ; 71(50): 19970-19985, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055343

RESUMO

Melatonin (MEL) is an antioxidant molecule that enhances plant tolerance to environmental stress. However, the mechanisms by which MEL regulates cold signaling pathways in grapes under cold stress remain elusive. Here, we investigated the physiological and transcriptomic changes in grape seedlings treated with exogenous MEL to determine their protective role under cold stress. Results showed that 150 µM MEL effectively attenuated cold-induced cell damage by reducing reactive oxygen species (ROS) and preserving the chloroplast structure and function. MEL also inhibited tannin degradation, which contributed to its protective effect. Exogenous MEL promoted the synthesis of endogenous MEL, abscisic acid, auxin, and cytokinin while inhibiting gibberellin. Transcriptomic profiling revealed 776 differentially expressed transcripts in MEL-treated samples compared to controls. Functional analysis of a candidate hub gene, VvHSFA6b, showed that its overexpression in grape calli enhances cold tolerance by activating jasmonic acid synthesis pathway genes, promoting JA accumulation, and inhibiting JAZ-repressed transcription factors.


Assuntos
Melatonina , Vitis , Melatonina/farmacologia , Melatonina/metabolismo , Vitis/genética , Vitis/metabolismo , Plântula/metabolismo , Antioxidantes/metabolismo , Estresse Fisiológico , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica
5.
BMC Plant Biol ; 23(1): 611, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041099

RESUMO

BACKGROUND: GATA transcription factors are type IV zinc-finger proteins that play key roles in plant growth and responses to environmental stimuli. Although these proteins have been studied in model plants, the related studies of GATA gene family under abiotic stresses are rarely reported in grapevine (Vitis vinifera L.). RESULTS: In the current study, a total of 23 VviGATA genes were identified in grapevine and classified into four groups (I, II, III, and IV), based on phylogenetic analysis. The proteins in the same group exhibited similar exon-intron structures and conserved motifs and were found to be unevenly distributed among the thirteen grapevine chromosomes. Accordingly, it is likely that segmental and tandem duplication events contributed to the expansion of the VviGATA gene family. Analysis of cis-acting regulatory elements in their promoters suggested that VviGATA genes respond to light and are influenced by multiple hormones and stresses. Organ/tissue expression profiles showed tissue specificity for most of the VviGATA genes, and five were preferentially upregulated in different fruit developmental stages, while others were strongly induced by drought, salt and cold stress treatments. Heterologously expressed VamGATA5a, VamGATA8b, VamGATA24a, VamGATA24c and VamGATA24d from cold-resistant V. amurensis 'Shuangyou' showed nuclear localization and transcriptional activity was shown for VamGATA5a, VamGATA8b and VamGATA24d. CONCLUSIONS: The results of this study provide useful information for GATA gene function analysis and aid in the understanding of stress responses in grapevine for future molecular breeding initiatives.


Assuntos
Fatores de Transcrição GATA , Vitis , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Vitis/metabolismo , Filogenia , Regiões Promotoras Genéticas/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Família Multigênica
6.
J Agric Food Chem ; 71(49): 19357-19371, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38037352

RESUMO

In globally cultivated grapevines, low-temperature stress poses a persistent challenge. Although COLD1 is recognized as a cold receptor in rice, its function in grapevine cold signaling is unclear. Here, we identified VaCOLD1, a transmembrane protein from the cold-tolerant Vitis amurensis Rupr, which is primarily located on plasma and endoplasmic reticulum membranes. Broadly expressed across multiple tissues, VaCOLD1 responds to various environmental stresses, particularly to cold. Its promoter contains distinct hormone- and stress-responsive elements, with GUS assays confirming widespread expression in Arabidopsis thaliana. Validation of interaction between VaCOLD1 and VaGPA1, together with their combined expression in yeast and grape calli, notably improved cold endurance. Overexpression of VaCOLD1 enhances cold tolerance in Arabidopsis by strengthening the CBF-COR signaling pathway. This is achieved through shielding against osmotic disturbances and modifying the expression of ABA-mediated genes. These findings emphasize the critical role of the VaCOLD1-VaGPA1 complex in mediating the response to cold stress via the CBF-COR pathway.


Assuntos
Arabidopsis , Resposta ao Choque Frio , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Arabidopsis/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
7.
Opt Lett ; 48(13): 3579-3582, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390185

RESUMO

Employing a photosensitive donor/acceptor planar heterojunction (DA-PHJ) with complementary optical absorption as the active layer is one of the key strategies for realizing broad spectral organic photodiodes (BS-OPDs). To achieve superior optoelectronic performance, it is vital to optimize the thickness ratio of the donor layer to acceptor layer (the DA thickness ratio) in addition to the optoelectronic properties of the DA-PHJ materials. In this study, we realized a BS-OPD exploiting tin(II) phthalocyanine (SnPc)/3,4,9,10-perylenete-acarboxylic dianhydride (PTCDA) as the active layer and investigated the effect of the DA thickness ratio on the device performance. The results showed that the DA thickness ratio has a significant impact on the device performance, and an optimized DA thickness ratio of 30:20 was found. Upon the optimization of the DA thickness ratio, improvements of 187% in photoresponsivity and 144% in specific detectivity were achieved on average. Trap-free space-charge-limited photocarrier transport and balanced optical absorption over the wavelength range can be ascribed to the improved performance at the optimized DA thickness ratio. These results establish a solid photophysical foundation for improving the performance of BS-OPDs via thickness ratio optimization.


Assuntos
Isoindóis , Estanho
8.
Materials (Basel) ; 16(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770172

RESUMO

Composite material uses ceramic reinforcement to add to the metal matrix to obtain higher material properties. Structural design is an important direction of composite research. The reinforcement distribution of the core-shell structure has the unique advantages of strong continuity and uniform stress distribution. In this paper, a method of preparing boron carbide (B4C)-coated titanium (Ti) powder particles by ball milling and preparing core-shell B4C-reinforced Ti matrix composites by Spark Plasma Sintering was proposed. It can be seen that B4C coated on the surface of the spherical Ti powder to form a shell structure, and B4C had a certain continuity. Through X-ray diffraction characterization, it was found that B4C reacted with Ti to form layered phases of titanium boride (TiB) and titanium carbide (TiC). The compressive strength of the composite reached 1529.1 MPa, while maintaining a compressive strain rate of 5%. At the same time, conductivity and thermal conductivity were also characterized. The preparation process of the core-shell structure composites proposed in this paper has high feasibility and universality, and it is expected to be applied to other ceramic reinforcements. This result provides a reference for the design, preparation and performance research of core-shell composite materials.

9.
Tree Physiol ; 43(3): 467-485, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36331330

RESUMO

In many perennial fruit species, including grapevine (Vitis vinifera L.), the highly complex process of somatic embryogenesis (SE) can result in the formation of a deformed embryo, although the underlying reasons are still poorly understood. Here, V. vinifera cv. 'Chardonnay' cotyledonary embryos with distinct morphologies were used to address this issue. Normal cotyledonary embryos (NCEs) and elongated cotyledonary embryos (ECEs) were observed to have better-developed vasculature and shoot meristems than the vitrified cotyledonary embryos (VCEs) and fused cotyledonary embryos (FCEs), but ECEs were less developed. We determined that the morphological differences in these phenotypically abnormal embryos were likely associated with endogenous hormone levels, since concentrations of the phytohormones indoleacetic acid (IAA) and abscisic acid (ABA) in NCEs were higher than in the other three types. Comparative transcriptome analysis revealed large differences in gene expression of the hormone signaling pathways in normal and abnormal cotyledonary embryos. Weighted gene co-expression network analysis of the different cotyledonary types allowed the identification of co-regulated gene modules associated with SE, suggesting a role for ERF family genes and other transcription factors (TFs) in regulating morphology. Moreover, an analysis of morphology-specific gene expression indicated that the activation of a specific protein kinase, small heat shock proteins (sHSPs) and certain TFs was closely associated with the formation of normal cotyledonary embryos. Our comparative analyses provide insights into the gene networks regulating somatic cotyledon development and open new avenues for research into plant regeneration and functional genomic studies of malformed embryos.


Assuntos
Cotilédone , Vitis , Cotilédone/metabolismo , Transcriptoma , Vitis/fisiologia , Reguladores de Crescimento de Plantas , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Materials (Basel) ; 15(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499979

RESUMO

In the present study, the effects of SiC nanowires (SiCnws) with diameters of 100 nm, 250 nm and 450 nm on the microstructure and mechanical behavior of 20 vol.% SiCnws/6061Al composites prepared by pressure infiltration were studied. It was found that the interface between SiCnws and Al matrix was well bonded, and no interface product was found. The thicker SiCnws are beneficial to improve the density. In addition, the bamboo-like and bone-like morphologies of SiCnws produce a strong interlocking effect between SiCnws and Al, which helps to improve the strength and plasticity of the material. The tensile strength of the composite prepared by SiCnws with a diameter of 450 nm reached 544 MPa. With a decrease in the diameter of SiCnws, the strengthening effect of SiCnws increases. The yield strength of SiCnws/6061Al composites prepared by 100 nm is 13.4% and 28.5% higher than that of 250 nm and 450 nm, respectively. This shows that, in nano-reinforced composites, the small-size reinforcement has an excellent improvement effect on the properties of the composites. This result has a guiding effect on the subsequent composite structure design.

11.
Rev Sci Instrum ; 93(12): 124702, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586935

RESUMO

A reliable and repeatable triggering technology for a megavolt gap switch with a low working coefficient η is an urgent need and a research focus. In this study, a novel method of hybrid plasma injection (HPI) driven by pulsed discharge inside a capillary was first proposed. The HPI actuator adopted a metal-polytetrafluoroethylene (PTFE)-stacked capillary, in which severe ablation could generate a hybrid plasma containing gas and metal vapor ionized component ejected outward from the nozzle. The HPI actuator could perform repeatedly with an extremely strong plasma injection and triggering ability and, thus, provided a solution for megavolt ultrafast bypass switches (UFBPSs). The evolution and the trigger properties of the HPI actuator were investigated, and the influence of the stacked material (Al, Zn, and Sn) and its proportion (3/15, 7/15, and 10/15) was studied, followed by the performance degradation in multi-shot. It was found that stacking chemically active and low-ionization-energy aluminum in a proportion of 7/15 strongly enhanced the HPI, with an initial velocity of 1200 m/s and a maximum height of 7.5 cm in 0.5 MPa SF6. In repeated operations, the HPI actuator performance degraded obviously due to capillary expansion and deformation, and the lifetime was tens of magnitude. Finally, the optimized HPI actuator was used to trigger a 7 cm-0.5 MPa SF6 gap, with a breakdown voltage of ∼1.5 MV. When a 100 kV DC voltage was applied (η < 7%), the gap was successfully and continuously triggered for 27 shots with the trigger delay ranging from 301 to 670 µs, indicating that the HPI actuator could effectively and repeatedly trigger megavolt-magnitude SF6 gaps at a very low η and was a good solution for megavolt UFBPSs.

12.
Sci Rep ; 12(1): 20983, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470904

RESUMO

Using image recognition technology to realize coal gangue recognition is one of the development directions of intelligent fully mechanized caving mining. Aiming at the problem of low accuracy of coal gangue recognition in fully mechanized caving mining, the extraction method of Coal and gangue images features is proposed, and the corresponding coal gangue recognition model is constructed. The illuminance value is an important factor affecting the imaging quality. Therefore, a multi-light source image acquisition system is designed, and the optimal illuminance value suitable for coal and gangue images acquisition is determined to be 17,130 Lux. There is a large amount of image noise in the gray-sc5ale image, so Gaussian filtering is used to eliminate the noise in the gray-scale image of coal and gangue. Then, six gray-scale features and four texture features are extracted from 900 coal and gangue images respectively. It is concluded that the three kinds of features of gray skewness, gray variance and texture contrast have the highest discrimination on coal and gangue images. Least squares vector machine has a strong ability to classify, so the use of least squares vector machine to achieve coal gangue identification, and build coal gangue identification model. The results show that the recognition accuracy of the model for coal gangue images is 92.2% and 91.5%, respectively, with gray skewness and texture contrast as indicators. This study provides a reliable theoretical support for solving the problem of low recognition rate of coal gangue in fully mechanized caving mining.

13.
Materials (Basel) ; 15(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36556875

RESUMO

The mechanical properties of (Ti, Nb)B/Ti2AlNb composites were expected to improve further by utilizing spark plasma sintering (SPS) and inducing the novel three-dimensional network architecture. In this study, (Ti, Nb)B/Ti2AlNb composites with the novel architecture were successfully fabricated by ball milling the LaB6 and Ti2AlNb mixed powders and subsequent SPS consolidation. The influence of the (Ti, Nb)B content on the microstructure and mechanical properties of the composites was revealed by using the scanning electron microscope (SEM), transmission electron microscopy (TEM) and electronic universal testing machine. The microstructural characterization demonstrated that the boride crystallized into a B27 structure and the α2-precipitated amount increased with the (Ti, Nb)B increasing. When the (Ti, Nb)B content reached 4.9 vol%, both the α2 and reinforcement exhibited a continuous distribution along the prior particle boundaries (PPBs). The tensile test displayed that the tensile strength of the composites presented an increasing trend with the increasing (Ti, Nb)B content followed by a decreasing trend. The composite with a 3.2 vol% reinforcement had the optimal mechanical properties; the yield strengths of the composite at 25 and 650 °C were 998.3 and 774.9 MPa, showing an 11.8% and 9.2% improvement when compared with the Ti2AlNb-based alloy. Overall, (Ti, Nb)B possessed an excellent strengthening effect and inhibited the strength weakening of the PPBs area at high temperatures; the reinforcement content mainly affected the mechanical properties of the (Ti, Nb)B/Ti2AlNb composites by altering the α2-precipitated amount and the morphology of (Ti, Nb)B in the PPBs area. Both the continuous precipitation of the brittle α2 phase and the agglomeration of the (Ti, Nb)B reinforcement dramatically deteriorated the mechanical properties.

14.
Diabetes Metab Syndr Obes ; 15: 3437-3445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353669

RESUMO

Background: Although flash continuous glucose monitoring systems (FCGM) accuracy has been extensively studied in diabetes, its accuracy is still not fully evaluated in type 2 diabetes (T2D) patients in real-world settings. In the present study, we aim to assess the effects of diabetes complications and related comorbidities on FCGM accuracy in T2D patients with diabetes complications and related comorbidities in the real world. Methods: FCGM data were collected at eight-time points daily (3 AM, 7 AM, 9 AM, 11 AM, 1 PM, 5 PM, 7 PM, and 9 PM) from 742 patients with T2D and compared with simultaneous fingertip capillary blood glucose (reference blood glucose, REF), and the difference was evaluated using Parkes error grid (PEG), surveillance error grid (SEG), and logistic regression analysis. Results: In total, 25,579 FCGM/REF data pairs were included in the study. The FCGM values were lower than the paired REF values in 75% of the pairs. The maximum bias (-23.0%) and maximum mean absolute relative difference (24.5%) were observed at 3 AM among eight-time points. SEG analysis also demonstrated the highest percentage of paired readings in moderate and great risk zone (C and D) at 3 AM than PEG analysis (7.33% vs 0.43%, P<0.001). According to the SEG classification, hypoglycemia, infection, diabetic foot, diabetic ketoacidosis, and hypertension were independent risk factors that impaired FCGM accuracy in patients. Conclusion: FCGM commonly underestimates blood glucose levels. Compared with PEG, SEG analysis seems more conducive to the analysis of FCGM performance. The present data highlights the impairment of diabetes complications and related comorbidities on the FCGM accuracy in T2D patients.

15.
Chaos ; 32(8): 083124, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36049956

RESUMO

The spread of disease on complex networks has attracted wide attention in physics, mathematics, and epidemiology. Recent works have demonstrated that individuals always exhibit different criteria for disease infection in a network that significantly influences the epidemic dynamics. In this paper, considering the heterogeneity of node susceptibility, we proposed an infection threshold model with neighbor resource support. The infection threshold of an individual is associated with the degree, and a parameter follows the normal distribution. Based on improved heterogeneous mean-field theory and extensive numerical simulations, we find that the mean and standard deviation of the infection threshold model can affect the phase transition and epidemic outbreak size. As the mean of the normal distribution parameter increases from a small value to a large value, the system shows a change from a continuous phase transition to a discontinuous phase transition, and the disease even stops spreading. The disease spreads from a discontinuous phase transition to continuous for the sizeable mean value as the standard deviation increases. Furthermore, the standard deviation also varies in the outbreak size.


Assuntos
Epidemias , Surtos de Doenças , Humanos , Distribuição Normal , Física , Rede Social
16.
PLoS One ; 17(9): e0274209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36166471

RESUMO

The problems of water scarcity and ecological fragility are common in the loess gully area. To research the distribution and evolution of the overburden fissures and quantitatively analyze them have certain theoretical and engineering significance for realizing the evaluation of overburden damage degree and safe and green mining. This paper takes the 6102 working face of Chuancao Gedan Coal Mine as the engineering background. The development law and distribution characteristics of overburden fissures caused by the mining of shallow coal seams in the loess gully area were studied by the combination of physical similarity simulation, numerical similarity simulation and fractal theory. The results show that the fractal dimension change of the overburden fissures caused by the shallow mining of coal seam groups in the loess gully area can be divided into three stages during the mining process of the working face. Repeated mining causes the activation and development of overburden fissures, the fractal dimension increases significantly, and the regularity of changes weakens. The magnitude of the stress near the working face and the fluctuation times of the stress in the goaf have an influence on the change of the fractal dimension of the overburden fissures. According to the development angle and the fractal dimension of the overburden fissures, the overburden rock above the goaf is divided into the collapse fissure area, the compaction fissure area, and the vertical fissure area. Overburden fissures develop violently in the vertical fissure area, the overburden fissures in the compaction fissure area are mostly transverse fissures, and the overburden fissures in the caving fissure area are irregular.


Assuntos
Minas de Carvão , Fractais , Carvão Mineral , Minas de Carvão/métodos , Simulação por Computador , Modelos Teóricos
17.
Artigo em Inglês | MEDLINE | ID: mdl-35682200

RESUMO

The accurate prediction of Municipal Solid Waste (MSW) electricity generation is very important for the fine management of a city. This paper selects Shanghai as the research object, through the construction of a Bidirectional Long Short-Term Memory (BiLSTM) model, and chooses six influencing factors of MSW generation as the input indicators, to realize the effective prediction of MSW generation. Then, this study obtains the MSW electricity generation capacity in Shanghai by using the aforementioned prediction results and the calculation formula of theMSW electricity generation. The experimental results show that, firstly, the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) values of the BiLSTM model are 42.31, 7.390, and 63.32. Second, it is estimated that by 2025, the maximum and minimum production of MSW in Shanghai will be 17.35 million tons and 8.82 million tons under the three scenarios. Third, it is predicted that in 2025, the maximum and minimum electricity generation of Shanghai MSW under the three scenarios will be 512.752 GWh/y and 260.668 GWh/y. Finally, this paper can be used as a scientific information source for environmental sustainability decision-making for domestic MSW electricity generation technology.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , China , Eletricidade , Memória de Curto Prazo , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Gerenciamento de Resíduos/métodos
18.
PLoS One ; 17(6): e0269822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749517

RESUMO

Air leakage from surface mining-induced fissures can easily cause spontaneous combustion of residual coal in the goaf, which threatens the safe production of the underground working face. In order to study the air leakage law of the goaf under the surface air leakage and the prevention and control technology of spontaneous combustion of residual coal. Based on engineering data from the 6104 working face of the Chuancao Gedan coal mine, this study uses a combination of theoretical analyses, numerical simulations, and field observations to study the dynamic distribution characteristics of the air leakage velocity of surface mining-induced fissures in shallow coal seams, the distribution characteristics of relative pressure, the air leakage velocity, the air leakage flow field, the distribution ranges for the "three zones" of spontaneous combustion in the goaf, and a reasonable range for the pressurized ventilation of the working face. The results show that there is a quadratic relationship between the air leakage speed from the surface mining-induced fissures in shallow coal seams and the distance from the working face. The air leakage speed decreases as the distance from the working face increases, and the air leakage speed in the middle of the working face is slower than the air leakage on either side of the goaf. The pressure difference between the goaf and the surface mining-induced fissures is the root cause of air leakage into the goaf, and a change in the pressure difference has a significant impact on the air leakage flow field and the distributions of the "three zones" of spontaneous combustion in the goaf. When the pressure difference between the ground surface and the working face is maintained within the range of 200~-200 Pa, air leakage is effectively reduced, and the spontaneous combustion of residual coal is inhibited. The research results reveal the air leakage mechanism in the goaf of shallow coal seams and provide a reference for the prevention and control of spontaneous combustion of residual coal in the goaf.


Assuntos
Minas de Carvão , Combustão Espontânea , Carvão Mineral , Minas de Carvão/métodos , Engenharia , Pressão
19.
Materials (Basel) ; 15(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35161160

RESUMO

Rolling enables the directional alignment of the reinforcements in graphene/Cu composites while achieving uniform graphene dispersion and matrix grain refinement. This is expected to achieve a breakthrough in composite performance. In this paper, the process parameters of rolling are investigated, and the defects, thickness variations of graphene and property changes of the composite under different parameters are analyzed. High-temperature rolling is beneficial to avoid the damage of graphene during rolling, and the prepared composites have higher electrical conductivity. The properties of graphene were investigated. Low-temperature rolling is more favorable to the thinning and dispersion of graphene; meanwhile, the relative density of the composites is higher in the low-temperature rolling process. With the increase of rolling deformation, the graphene defects slightly increased and the number of layers decreased. In this paper, the defect states of graphene and the electrical conductivity with different rolling parameters is comprehensively investigated to provide a reference for the rolling process of graphene/copper composites with different demands.

20.
Microb Cell Fact ; 20(1): 218, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863176

RESUMO

BACKGROUND: The characterization of colonization and dynamic changes related to gut microorganisms might be vital, as it presents an opportunity to quantify the co-variation between stocking densities and gut microbiome of dynamic distribution. The objective of this study was to determine the stocking density on physiological performance and dynamic distribution of gut microbiome (including bacterial and fungal communities) of Langya laying hens in the two development stages. METHODS: A randomized design with 2 × 3 factorial controls consisting of two development stages (24, 43 weeks-old) with three different stocking densities was performed. Three different stocking densities were allocated to a total of 300 11-week-old Langya laying hens (450 cm2/bird, 675 cm2/bird, 900 cm2/bird). Three housing densities were accomplished by raising different chickens per cage with the same floor size. The dependent variables of stocking densities at each sampling point were; growth performance, organs index, egg quality and the changes of dynamic gut bacterial and fungal communities in the cecum. RESULTS: Results showed that the stocking density didn't affect liver index, eggshell thickness, breaking shell strength and egg shape index. Hens from the highest stocking density had the lowest body weight, fallopian tube index, egg weight and yolk colour score. Except for the yolk colour score, the measurement changes caused by age followed the opposite pattern as stocking density. We observed a substantial rise in taxa linked with health threats when stocking density was increased, including Talaromyces, Oscillospiraceae_UCG-002, Oscillospira, and Dielma. The opposite was observed with Bacteroides, Bifidobacterium, Lachnoclostridium, Eisenbergiella, and Kurtzmaniella. Also, most taxa were linked to polymicrobial infection in clinical cases, especially species whose percentage declined as the hens aged, such as Terrisporobacter, Faecalicoccus, Dialister, Cylindrocarpon etc. Whereas Sellimonas, Mitsuokella, Eurotium, Wardomyces and Cephalotheca had the opposite trend. CONCLUSION: We speculated that excessive high density drove the abundance of bacteria and fungi connected with health problems. Where the gut microecology gradually reach a mature and balance status with age. Overall, this study demonstrates gut microbiome ecological processes in Langya layers at various stocking densities and finds possible connections between stocking density, microbiome and production performance. Our study will contribute to new insights associating suitable density patterns and production performance in laying hens by harnessing such a relative microbiome.


Assuntos
Criação de Animais Domésticos/métodos , Galinhas/microbiologia , Galinhas/fisiologia , Microbioma Gastrointestinal , Micobioma , Fatores Etários , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Feminino , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Abrigo para Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...