Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38004539

RESUMO

The purpose of the study is to develop a novel peptide for caries management. Gallic-Acid-Polyphemusin-I (GAPI) was synthesised by grafting Polyphemusin I (PI) and gallic acid (GA). Biocompatibility was evaluated using a Cell Counting Kit-8 Assay. Antimicrobial properties were assessed using minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). The bacterial and fungal morphology after GAPI treatment was investigated using transmission electron microscopy (TEM). The architecture of a consortium biofilm consisting of Streptococcus mutans, Lacticaseibacillus casei and Candida albicans was evaluated using scanning electron microscopy (SEM) and confocal laser scanning microscopy. The growth kinetics of the biofilm was examined using a propidium monoazide-quantitative polymerase chain reaction. The surface and calcium-to-phosphorus molar ratio of GAPI-treated enamel after pH cycling were examined with SEM and energy-dispersive X-ray spectroscopy. Enamel crystal characteristics were analysed using X-ray diffraction. Lesion depths representing the enamel's mineral loss were assessed using micro-computed tomography. The MIC of GAPI against S. mutans, L. casei and C. albicans were 40 µM, 40 µM and 20 µM, respectively. GAPI destroyed the biofilm's three-dimensional structure and inhibited the growth of the biofilm. SEM showed that enamel treated with GAPI had a relatively smooth surface compared to that treated with water. The calcium-to-phosphorus molar ratio of enamel treated with GAPI was higher than that of the control. The lesion depths and mineral loss of the GAPI-treated enamel were less than the control. The crystallinity of the GAPI-treated enamel was higher than the control. This study developed a biocompatible, mineralising and antimicrobial peptide GAPI, which may have potential as an anti-caries agent.

2.
Antibiotics (Basel) ; 12(9)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37760647

RESUMO

A novel antimicrobial peptide, GAPI, has been developed recently by grafting gallic acid (GA) to polyphemusin I (PI). The objective of this study was to investigate the antibacterial effects of GAPI on common oral pathogens. This laboratory study used minimum inhibitory concentrations and minimum bactericidal concentrations to assess the antimicrobial properties of GAPI against common oral pathogens. Transmission electron microscopy was used to examine the bacterial morphology both before and after GAPI treatment. The results showed that the minimum inhibitory concentration ranged from 20 µM (Lactobacillus rhamnosus) to 320 µM (Porphyromonas gingivalis), whereas the minimum bactericidal concentration ranged from 80 µM (Lactobacillus acidophilus) to 640 µM (Actinomyces naeslundii, Enterococcus faecalis, and Porphyromonas gingivalis). Transmission electron microscopy showed abnormal curvature of cell membranes, irregular cell shapes, leakage of cytoplasmic content, and disruption of cytoplasmic membranes and cell walls. In conclusion, the GAPI antimicrobial peptide is antibacterial to common oral pathogens, with the potential to be used to manage oral infections.

3.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762381

RESUMO

This study aimed to investigate the antibiofilm and remineralising effects of peptide GAPI on artificial dentin caries. After creating artificial carious lesions, eighty dentine blocks were randomly assigned for treatment twice daily with GAPI (GAPI group) or deionised water (control group). Both groups underwent a 7-day biochemical cycle. Scanning electron microscopy (SEM) showed S. mutans with damaged structures that partially covered the dentine in the GAPI group. The dead-live ratios for the GAPI and control groups were 0.77 ± 0.13 and 0.37 ± 0.09 (p < 0.001). The log colony-forming units for the GAPI and control groups were 7.45 ± 0.32 and 8.74 ± 0.50 (p < 0.001), respectively. The lesion depths for the GAPI and control groups were 151 ± 18 µm and 214 ± 15 µm (p < 0.001), respectively. The mineral losses for the GAPI and control groups were 0.91 ± 0.07 gHAcm-3 and 1.01 ± 0.07 gHAcm-3 (p = 0.01), respectively. The hydrogen-to-amide I ratios for the GAPI and control groups were 2.92 ± 0.82 and 1.83 ± 0.73 (p = 0.014), respectively. SEM micrographs revealed fewer exposed dentine collagen fibres in the GAPI group compared to those in the control group. Furthermore, X-ray diffraction (XRD) patterns indicated that the hydroxyapatite in the GAPI group was more crystallised than that in the control group. This study demonstrated GAPI's antibiofilm and remineralising effects on artificial dentin caries.

4.
Dent J (Basel) ; 11(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36975556

RESUMO

Researchers have developed novel bioactive materials for caries management. Many clinicians also favour these materials, which fit their contemporary practice philosophy of using the medical model of caries management and minimally invasive dentistry. Although there is no consensus on the definition of bioactive materials, bioactive materials in cariology are generally considered to be those that can form hydroxyapatite crystals on the tooth surface. Common bioactive materials include fluoride-based materials, calcium- and phosphate-based materials, graphene-based materials, metal and metal-oxide nanomaterials and peptide-based materials. Silver diamine fluoride (SDF) is a fluoride-based material containing silver; silver is antibacterial and fluoride promotes remineralisation. Casein phosphopeptide-amorphous calcium phosphate is a calcium- and phosphate-based material that can be added to toothpaste and chewing gum for caries prevention. Researchers use graphene-based materials and metal or metal-oxide nanomaterials as anticaries agents. Graphene-based materials, such as graphene oxide-silver, have antibacterial and mineralising properties. Metal and metal-oxide nanomaterials, such as silver and copper oxide, are antimicrobial. Incorporating mineralising materials could introduce remineralising properties to metallic nanoparticles. Researchers have also developed antimicrobial peptides with mineralising properties for caries prevention. The purpose of this literature review is to provide an overview of current bioactive materials for caries management.

5.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835657

RESUMO

The objective of this study was to review the design methods that have been used to create peptides for use in caries management. Two independent researchers systematically reviewed many in vitro studies in which peptides were designed for use in caries management. They assessed the risk of bias in the included studies. This review identified 3592 publications, of which 62 were selected. Forty-seven studies reported 57 antimicrobial peptides. Among them, 31 studies (66%, 31/47) used the template-based design method; 9 studies (19%, 9/47) used the conjugation method; and 7 studies (15%, 7/47) used other methods, such as the synthetic combinatorial technology method, the de novo design method and cyclisation. Ten studies reported mineralising peptides. Seven of these (70%, 7/10) used the template-based design method, two (20%, 2/10) used the de novo design method, and one study (10%, 1/10) used the conjugation method. In addition, five studies developed their own peptides with antimicrobial and mineralising properties. These studies used the conjugation method. Our assessment for the risk of bias in the 62 reviewed studies showed that 44 publications (71%, 44/62) had a medium risk and that 3 publications had a low risk (5%, 3/62). The two most common methods for developing peptides for use in caries management that were used in these studies were the template-based design method and the conjugation method.


Assuntos
Anti-Infecciosos , Cárie Dentária , Humanos , Suscetibilidade à Cárie Dentária , Peptídeos , Projetos de Pesquisa , Peptídeos Antimicrobianos
6.
J Funct Biomater ; 13(4)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36412851

RESUMO

Objective: Researchers are studying the use of antimicrobial peptides as functional biomaterials to prevent and treat dental caries. This study aims to investigate the global research interest in antimicrobial peptides for caries management. Methods: Two independent investigators systematically searched with keywords ('Caries' OR 'Dental caries') AND ('Antimicrobial peptide' OR 'AMP' OR 'Statherin' OR 'Histatin' OR 'Defensin' OR 'Cathelicidin') on Web of Science, PubMed and Scopus. They removed duplicate publications and screened the titles and abstracts to identify relevant publications. The included publications were summarized and classified as laboratory studies, clinical trials or reviews. The citation count and citation density of the three publication types were compared using a one-way analysis of variance. The publications' bibliometric data were analyzed using the Bibliometrix program. Results: This study included 163 publications with 115 laboratory studies (71%), 29 clinical trials (18%) and 19 reviews (11%). The number of publications per year have increased steadily since 2002. The citation densities (mean ± SD) of laboratory study publications (3.67 ± 2.73) and clinical trial publications (2.63 ± 1.85) were less than that of review articles (5.79 ± 1.27) (p = 0.002). The three publication types had no significant difference in citation count (p = 0.54). Most publications (79%, 129/163) reported the development of a novel antimicrobial peptide. China (52/163, 32%) and the US (29/163, 18%) contributed to 50% (81/163) of the publications. Conclusion: This bibliometric analysis identified an increasing trend in global interest in antimicrobial peptides for caries management since 2002. The main research topic was the development of novel antimicrobial peptides. Most publications were laboratory studies, as were the three publications with the highest citation counts. Laboratory studies had high citation counts, whereas reviews had high citation density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...