Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Commun ; 15(1): 3165, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605010

RESUMO

The mechanisms of bifurcation, a key step in thyroid development, are largely unknown. Here we find three zebrafish lines from a forward genetic screening with similar thyroid dysgenesis phenotypes and identify a stop-gain mutation in hgfa and two missense mutations in met by positional cloning from these zebrafish lines. The elongation of the thyroid primordium along the pharyngeal midline was dramatically disrupted in these zebrafish lines carrying a mutation in hgfa or met. Further studies show that MAPK inhibitor U0126 could mimic thyroid dysgenesis in zebrafish, and the phenotypes are rescued by overexpression of constitutively active MEK or Snail, downstream molecules of the HGF/Met pathway, in thyrocytes. Moreover, HGF promotes thyrocyte migration, which is probably mediated by downregulation of E-cadherin expression. The delayed bifurcation of the thyroid primordium is also observed in thyroid-specific Met knockout mice. Together, our findings reveal that HGF/Met is indispensable for the bifurcation of the thyroid primordium during thyroid development mediated by downregulation of E-cadherin in thyrocytes via MAPK-snail pathway.


Assuntos
Fator de Crescimento de Hepatócito , Disgenesia da Tireoide , Animais , Camundongos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Caderinas/genética , Disgenesia da Tireoide/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
2.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240202

RESUMO

The Janus kinase/signal transducer and activator of the transcription 3 (JAK/STAT3) signaling pathway controls multiple biological processes, including cell survival, proliferation, and differentiation. Abnormally activated STAT3 signaling promotes tumor cell growth, proliferation, and survival, as well as tumor invasion, angiogenesis, and immunosuppression. Hence, JAK/STAT3 signaling has been considered a promising target for antitumor therapy. In this study, a number of ageladine A derivative compounds were synthesized. The most effective of these was found to be compound 25. Our results indicated that compound 25 had the greatest inhibitory effect on the STAT3 luciferase gene reporter. Molecular docking results showed that compound 25 could dock into the STAT3 SH2 structural domain. Western blot assays demonstrated that compound 25 selectively inhibited the phosphorylation of STAT3 on the Tyr705 residue, thereby reducing STAT3 downstream gene expression without affecting the expression of the upstream proteins, p-STAT1 and p-STAT5. Compound 25 also suppressed the proliferation and migration of A549 and DU145 cells. Finally, in vivo research revealed that 10 mg/kg of compound 25 effectively inhibited the growth of A549 xenograft tumors with persistent STAT3 activation without causing significant weight loss. These results clearly indicate that compound 25 could be a potential antitumor agent by inhibiting STAT3 activation.


Assuntos
Janus Quinases , Transdução de Sinais , Humanos , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Janus Quinases/metabolismo , Fosforilação , Fator de Transcrição STAT3/metabolismo , Proliferação de Células , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose
3.
Mar Drugs ; 21(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37103357

RESUMO

The JAK/STAT3 signaling pathway is aberrantly hyperactivated in many cancers, promoting cell proliferation, survival, invasiveness, and metastasis. Thus, inhibitors targeting JAK/STAT3 have enormous potential for cancer treatment. Herein, we modified aldisine derivatives by introducing the isothiouronium group, which can improve the antitumor activity of the compounds. We performed a high-throughput screen of 3157 compounds and identified compounds 11a, 11b, and 11c, which contain a pyrrole [2,3-c] azepine structure linked to an isothiouronium group through different lengths of carbon alkyl chains and significantly inhibited JAK/STAT3 activities. Further results showed that compound 11c exhibited the optimal antiproliferative activity and was a pan-JAKs inhibitor capable of inhibiting constitutive and IL-6-induced STAT3 activation. In addition, compound 11c influenced STAT3 downstream gene expression (Bcl-xl, C-Myc, and Cyclin D1) and induced the apoptosis of A549 and DU145 cells in a dose-dependent manner. The antitumor effects of 11c were further demonstrated in an in vivo subcutaneous tumor xenograft experiment with DU145 cells. Taken together, we designed and synthesized a novel small molecule JAKs inhibitor targeting the JAK/STAT3 signaling pathway, which has predicted therapeutic potential for JAK/STAT3 overactivated cancer treatment.


Assuntos
Isotiurônio , Transdução de Sinais , Humanos , Isotiurônio/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Azepinas/farmacologia , Pirróis/farmacologia , Fator de Transcrição STAT3/metabolismo
4.
Front Endocrinol (Lausanne) ; 14: 920548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824359

RESUMO

Background: ISL LIM homeobox 2, also known as insulin gene enhancer protein ISL-2 (ISL2), is a transcription factor gene that participates in a wide range of developmental events. However, the role of ISL2 in the hypothalamus-pituitary-thyroid axis is largely unknown. In the present study, we characterized the expression patterns of ISL2 and revealed its regulative role during embryogenesis using zebrafish. Methods: We used the CRISPR/Cas9 system to successfully establish homozygous ISL2-orthologue (isl2a and isl2b) knockout zebrafish. Moreover, we utilized these knockout zebrafish to analyze the pituitary and thyroid phenotypes in vivo. For further molecular characterization, in situ hybridization and immunofluorescence were performed. Results: The isl2a mutant zebrafish presented with thyroid hypoplasia, reduced whole-body levels of thyroid hormones, increased early mortality, gender imbalance, and morphological retardation during maturity. Additionally, thyrotropes, a pituitary cell type, was notably decreased during development. Importantly, the transcriptional levels of pituitary-thyroid axis hormones-encoding genes, such as tshba, cga, and tg, were significantly decreased in isl2a mutants. Finally, the thyroid dysplasia in isl2a mutant larvae may be attributed to a reduction in proliferation rather than changes in apoptosis. Conclusions: In summary, isl2a regulates the transcriptional levels of marker genes in hypothalamus-pituitary-thyroid axis, and isl2a knockout causing low thyroid hormone levels in zebrafish. Thus, isl2a identified by the present study, is a novel regulator for pituitary cell differentiation in zebrafish, resulting in thyroid gland hypoplasia and phenotypes of hypothyroidism.


Assuntos
Fatores de Transcrição , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Hipófise/metabolismo , Hormônios Tireóideos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Int J Endocrinol ; 2022: 6243696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392249

RESUMO

Background: BRAF exon 15 p.V600E (BRAF V600E) mutation has been established as an important molecular marker for papillary thyroid carcinoma diagnosis by ultrasound-guided fine-needle aspiration biopsy (FNAB). Sanger sequencing is the gold standard for detecting BRAF V600E mutations but fails to identify low-frequency mutations. However, droplet digital PCR (ddPCR) is a popular new method for detecting low-frequency mutations. Here, we compare the efficiency of droplet digital PCR (ddPCR) and Sanger sequencing for detection of the BRAF V600E mutation in thyroid fine-needle aspiration (FNA) samples. Methods: Thyroid fine-needle aspiration samples from 278 patients with 310 thyroid nodules were collected. Sanger sequencing and ddPCR were conducted to detect the BRAF V600E mutation. Results: The BRAF V600E mutation was found in 94 nodules (30.32%) by ddPCR and 40 nodules (12.90%) by Sanger sequencing in 310 FNA samples. A total of 119 nodules were confirmed PTC by postsurgical pathology. Among which the BRAF mutation was found in 80 (67.23%) nodules by ddPCR and 31 (26.05%) by Sanger sequencing. All nodules carrying the mutation detected by Sanger sequencing (SS+) were verified by ddPCR (ddPCR+). Also, all nodules with no mutation detected by ddPCR were interpreted as wild-type by Sanger sequencing (SS-). In addition. Almost all SS+/ddPCR + nodules (95.00%; 38/40) and SS-/ddPCR + nodules (100.00%; 54/54) displayed a BRAF mutation rate of >5% and <15%, respectively, indicating easy misdetection by Sanger sequencing when the mutation rate is between 5 and 15%. Conclusion: ddPCR has higher sensitivity than Sanger sequencing and we propose ddPCR as a supplement to Sanger sequencing in molecular testing of BRAF using FNAB samples.

6.
Nat Commun ; 13(1): 775, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140214

RESUMO

Hashimoto's thyroiditis (HT) is the most common autoimmune disease characterized by lymphocytic infiltration and thyrocyte destruction. Dissection of the interaction between the thyroidal stromal microenvironment and the infiltrating immune cells might lead to a better understanding of HT pathogenesis. Here we show, using single-cell RNA-sequencing, that three thyroidal stromal cell subsets, ACKR1+ endothelial cells and CCL21+ myofibroblasts and CCL21+ fibroblasts, contribute to the thyroidal tissue microenvironment in HT. These cell types occupy distinct histological locations within the thyroid gland. Our experiments suggest that they might facilitate lymphocyte trafficking from the blood to thyroid tissues, and T cell zone CCL21+ fibroblasts may also promote the formation of tertiary lymphoid organs characteristic to HT. Our study also demonstrates the presence of inflammatory macrophages and dendritic cells expressing high levels of IL-1ß in the thyroid, which may contribute to thyrocyte destruction in HT patients. Our findings thus provide a deeper insight into the cellular interactions that might prompt the pathogenesis of HT.


Assuntos
Microambiente Celular/imunologia , Doença de Hashimoto/metabolismo , Linfócitos/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Doenças Autoimunes/metabolismo , Quimiocina CCL21/metabolismo , Citocinas/metabolismo , Sistema do Grupo Sanguíneo Duffy , Células Endoteliais/metabolismo , Humanos , Interleucina-1beta , Células Mieloides , Receptores de Superfície Celular , Glândula Tireoide/patologia
7.
J Clin Res Pediatr Endocrinol ; 14(1): 46-55, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34545167

RESUMO

Objective: Defects in the human solute carrier family 26 member 4 (SLC26A4) gene are reported to be one of the causes of congenital hypothyroidism (CH). We aimed to identify SLC26A4 mutations in Chinese patients with CH and analyze the function of the mutations. Methods: Patients with primary CH were screened for 21 CH candidate genes mutations by targeted next-generation sequencing. All the exons and exon-intron boundaries of SLC26A4 were identified and analyzed. The function of six missense mutation in SLC26A4 were further investigated in vitro. Results: Among 273 patients with CH, seven distinct SLC26A4 heterozygous mutations (p.S49R, p.I363L, p.R409H, p.T485M, p.D661E, p.H723R, c.919-2A>G) were identified in 10 patients (3.66%, 10/273). In vitro experiments showed that mutation p.I363L, p.R409H, p.H723R affect the membrane location and ion transport of SLC26A4, while p.S49R did not. Mutation p.T485M and p.D661E only affected ion transport, but had no effect on the membrane location. Conclusion: The prevalence of SLC26A4 mutations was 3.66% in Chinese patients with CH. Five mutations (p.I363L, p.R409H, p.T485M, p.D661E and p.H723R) impaired the membrane location or ion transport function of SLC26A4, suggesting important roles for Ile363, Arg409, Thr485, Asp661, and His723 residues in SLC26A4 function. As all variants identified were heterozygous, the pathogenesis of these patients cannot be explained, and the pathogenesis of these patients needs further study.


Assuntos
Hipotireoidismo Congênito , Perda Auditiva Neurossensorial , Transportadores de Sulfato , Povo Asiático/genética , China , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Perda Auditiva Neurossensorial/genética , Heterozigoto , Humanos , Mutação , Transportadores de Sulfato/genética
8.
J Clin Lab Anal ; 35(9): e23920, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34318534

RESUMO

BACKGROUND: Molecular testing for oncogenic mutations in fine-needle aspiration has showed high predictive value in identifying malignant lesions from thyroid nodules with indeterminate cytology. METHODS: To figure out an efficient and economical gene panel for most medical institutions in China, we designed a five-gene panel including BRAF/NRAS/KRAS/HRAS/TERT genes and conducted a retrospective study to evaluate the role of this five-gene diagnostic panel in differential diagnosis of thyroid nodules. RESULTS: A total of 665 patients with 695 thyroid nodules were investigated in the current study. The fine-needle aspiration biopsy and surgically separated thyroid tissue specimens were harvested to test BRAF, TERT, NRAS, KRAS, and HRAS mutations. We identified 261 mutations in 665 patients, including 177 V600E mutations in BRAF. Three hundred and sixty-nine patients who underwent thyroid surgery after completion of the initial clinical and cytological evaluation were enrolled in the final analysis. The diagnostic sensitivity, specificity, and accuracy of the combination of FNAB cytology and five-gene detection were 74.7%, 93.8%, and 84.8%, respectively. BRAF V600E and five-gene panel could recognize 46.4% and 53.6% of papillary thyroid carcinoma in the patients with cytologically indeterminate nodules. CONCLUSION: The five-gene panel can effectively improve the sensitivity, negative predictive value, and accuracy of fine-needle aspiration biopsy cytology, especially in the patients with cytologically indeterminate nodules.


Assuntos
Biomarcadores Tumorais/genética , Mutação , Câncer Papilífero da Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/diagnóstico , Biópsia por Agulha Fina , Diagnóstico Diferencial , GTP Fosfo-Hidrolases/genética , Humanos , Proteínas de Membrana/genética , Técnicas de Diagnóstico Molecular , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Curva ROC , Estudos Retrospectivos , Telomerase/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/cirurgia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/cirurgia , Nódulo da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/cirurgia
9.
Aging (Albany NY) ; 13(9): 13087-13107, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971622

RESUMO

Mimecan encodes a secretory protein that is secreted into the human serum as two mature proteins with molecular masses of 25 and 12 kDa. We found 12-kDa mimecan to be a novel satiety hormone mediated by the upregulation of the expression of interleukin (IL)-1ß and IL-6 in the hypothalamus. Mimecan was found to be expressed in human pituitary corticotroph cells and was up-regulated by glucocorticoids, while the secretion of adrenocorticotropic hormone (ACTH) in pituitary corticotroph AtT-20 cells was induced by mimecan. However, the effects of mimecan in adrenal tissue on the hypothalamic-pituitary-adrenal (HPA) axis functions remain unknown. We demonstrated that the expression of mimecan in adrenal tissues is significantly downregulated by hypoglycemia and scalded stress. It was down-regulated by ACTH, but upregulated by glucocorticoids through in vivo and in vitro studies. We further found that 12-kDa mimecan fused protein increased the corticosterone secretion of adrenal cells in vivo and in vitro. Interestingly, compared to litter-mate mice, the diurnal rhythm of corticosterone secretion was disrupted under basal conditions, and the response to restraint stress was stronger in mimecan knockout mice. These findings suggest that mimecan stimulates corticosterone secretion in the adrenal tissues under basal conditions; however, the down-regulated expression of mimecan by increased ACTH secretion after stress in adrenal tissues might play a role in maintaining the homeostasis of an organism's responses to stress.


Assuntos
Expressão Gênica/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Fisiológico/fisiologia , Glândulas Suprarrenais/metabolismo , Hormônio Adrenocorticotrópico/sangue , Animais , Glucocorticoides/metabolismo , Hipotálamo/metabolismo , Camundongos , Camundongos Knockout , Hipófise/metabolismo
10.
Thyroid ; 30(12): 1820-1830, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32746755

RESUMO

Background: We aimed to examine the association of urinary iodine concentration with Hashimoto's thyroiditis (HT) risk, and particularly, to investigate whether the HT-related genetic variations might modify the effects of urinary iodine on HT in the Chinese Han population. Methods: We conducted a case-control study with 1723 Chinese (731 cases, 992 controls). The associations between urinary iodine concentration and HT risk were analyzed using logistic regression models. The effects of interactions between the genetic risk scores (GRSs) and urinary iodine on HT risk were assessed by including the respective interaction terms in the models. We also applied restricted cubic spline regression to estimate the possible nonlinear relationship. The multinomial logistic regression models were performed to determine the associations of urinary iodine with euthyroid-HT and hypothyroidism-HT. Results: After controlling for potential confounders, the odds of HT increased with increasing quartiles of urinary iodine concentration: adjusted odds ratios (ORs) and 95% confidence intervals [CIs] were 1.45 [1.06-1.99], 1.66 [1.17-2.34], and 2.07 [1.38-3.10] for the quartiles 2, 3, and 4, respectively, compared with the first quartile (p for trend <0.001). Multivariable restricted cubic spline regression analysis further demonstrated that there was a near-linear association between urinary iodine concentration and HT risk (p-overall <0.001; p-nonlinear = 0.074). However, we did not find significant interactions between urinary iodine and GRSs on the risk of HT (all p for interaction >0.05). Interestingly, we found that each increment of urinary iodine was associated with a more than twofold increase in the odds of hypothyroidism-HT (adjusted OR = 2.64 [CI = 1.73-4.05]), but not with euthyroid-HT (p > 0.05). Conclusions: Higher urinary iodine concentration was associated with increased risk of HT, and this association was near linear, indicating that increased urinary iodine has a continuous and graded impact on HT risk. Moreover, the iodine-HT association was not modified by genetic predisposition to HT. Interestingly, urinary iodine concentration was significantly associated with increased risk of hypothyroidism.


Assuntos
Doença de Hashimoto/genética , Doença de Hashimoto/urina , Iodo/urina , Polimorfismo de Nucleotídeo Único , Adulto , Povo Asiático/genética , Biomarcadores/urina , Estudos de Casos e Controles , China/epidemiologia , Feminino , Predisposição Genética para Doença , Doença de Hashimoto/diagnóstico , Doença de Hashimoto/etnologia , Humanos , Hipotireoidismo/diagnóstico , Hipotireoidismo/etnologia , Hipotireoidismo/urina , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco
12.
J Clin Endocrinol Metab ; 105(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32246145

RESUMO

CONTEXT: Hashimoto's thyroiditis (HT) and Graves' disease (GD) are the 2 main autoimmune thyroid diseases that have both similarities and differences. Determining the genetic basis that distinguishes HT from GD is key for a better understanding of the differences between these closely related diseases. OBJECTS: To identify the susceptibility genes for HT in the Chinese cohort and compare susceptibility genes between GD and HT. DESIGN: In the current study, 18 SNPs from 18 established GD risk loci were selected and then genotyped in 2682 patients with HT, 4980 patients with GD, and 3892 controls. The association analysis between HT and controls and heterogeneity analysis between HT and GD were performed on SPSS, with the logistic regression analysis adjusted for sex and age. RESULTS: We identified 11 susceptibility loci for HT in the Chinese Han population, with 4 loci, including the rs1265883 in SLAMF6 locus, rs1024161 in CTLA4, rs1521 in HLA-B, and rs5912838 in GPR174/ ITM2A at X chromosome, reaching genome-wide significance of 5 × 10-8. Five loci were reported to be associated with HT for the first time. We also identified 6 susceptibility loci with heterogeneity between GD and HT. Out of them, 4 loci were associated with GD but not with HT, including HLA-DPB1, CD40, TSHR, and TG; the association of HLA-B with GD was stronger than that with HT, but the association of SLAMF6 was reversed. CONCLUSION: Our findings suggested that the pathogenesis of HT and GD was different.


Assuntos
Loci Gênicos , Predisposição Genética para Doença , Doença de Graves/genética , Doença de Hashimoto/genética , Polimorfismo de Nucleotídeo Único , Adulto , Alelos , Antígeno CTLA-4/genética , China , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Antígenos HLA-B/genética , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/genética
13.
Mol Genet Genomic Med ; 8(7): e1249, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32342657

RESUMO

BACKGROUND: With several susceptibility single nucleotide polymorphisms identified by case-control association studies, Graves' disease is one of the most common forms of autoimmune thyroid disease. In this study, we aimed to determine whether any observed differences in genetic associations are influenced by sex in Chinese Han populations. METHODS: A total of 8,835 patients with Graves' disease and 9,936 sex-matched healthy controls were enrolled in the study. Confirmed by a two-staged association analysis, sex-specific analyses among 20 Graves' disease susceptibility loci were conducted. RESULTS: A significant sex-gene interaction was detected primarily at rs5912838 on Xq21.1 between the GPR174 and ITM2A genes, whereby male Graves' disease patients possessed a significantly higher frequency of risk alleles than their female counterparts. Interestingly, compared to women, male patients with Graves' disease had a higher cumulative genetic risk and higher persistent thyroid stimulating hormone receptor antibody-positive rate after receiving antithyroid drug therapy for at least 1 year. CONCLUSION: The findings of this study suggest the existence of one potential sex-specific Graves' disease variant on Xq21.1. This could increase our understanding of the pivotal mechanism behind Graves' disease and ultimately aid in identifying possible therapeutic targets.


Assuntos
Cromossomos Humanos X/genética , Doença de Graves/genética , Polimorfismo de Nucleotídeo Único , China , Epistasia Genética , Feminino , Frequência do Gene , Humanos , Masculino , Proteínas de Membrana/genética , Receptores Acoplados a Proteínas G/genética , Fatores Sexuais
14.
Clin Chim Acta ; 497: 147-152, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31356790

RESUMO

BACKGROUND: Defects in the human thyroid stimulating hormone receptor (TSHR) gene are reported to be one of the causes of congenital hypothyroidism (CH). We aimed to identify mutations in Chinese patients with CH and analyze the relationships between TSHR phenotypes and clinical phenotypes. METHODS: 220 patients with primary CH were screened for TSHR mutations by performing next-generation sequencing. All the exons and exon-intron boundaries of TSHR were analyzed. The function of 8 mutants in TSHR were further investigated in vitro. RESULTS: Among 220 patients with CH, 15 distinct TSHR mutations were identified in 13 patients (5.91%, 13/220, including our previous reported 110 patients, carried with 10 mutations in 8 patients). We found five distinct mutations in the additional cohort of 110 CH patients and identified 7 mutations (including a novel mutation, p.S567R) were loss-of-function mutations. CONCLUSION: Our study indicated that the prevalence of TSHR mutations was 5.91% among studied Chinese patients with CH. One novel TSHR variant was found and four genetic alterations revealed important role of the Ile216, Ala275, Asn372, Ser567 residues in signaling.


Assuntos
Povo Asiático/genética , Hipotireoidismo Congênito/genética , Análise Mutacional de DNA , Mutação , Receptores da Tireotropina/genética , Adulto , China , DNA/genética , Feminino , Células HEK293 , Humanos , Masculino , Fenótipo
15.
Mol Cell Endocrinol ; 494: 110492, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31255731

RESUMO

Approximately 20% of Graves' disease (GD) patients may result eventually in hypothyroidism in their natural course. Uterus globulin-associated protein 1 (UGRP1) was associated with GD in our previous study. Here we investigated the role of UGRP1 in the development of autoimmune thyroid disease (AITD). The results showed that UGRP1 was expressed in the thyrocytes of most Hashimoto's thyroiditis (HT) patients and a proportion of GD patients (293 HT and 198 GD). The pathologic features of UGRP1-positive thyrocytes resembled "Hürthle cells", and were surrounded by infiltrated leukocytes. The positivity rate of TPOAb in UGRP1-positive GD patients was much higher than that in -negative GD patients. Moreover, UGRP1 was co-expressed with Fas and HLA-DR in the thyrocytes of AITD patients. We also found IL-1ß but not Th1 or Th2 cytokines was able to upregulate the expression of UGRP1. Our findings indicated that UGRP1 may be a novel marker in thyrocytes to predict GD patients who develop hypothyroidism.


Assuntos
Progressão da Doença , Doença de Graves/metabolismo , Doença de Graves/patologia , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Secretoglobinas/metabolismo , Biomarcadores/metabolismo , Antígenos HLA-DR/metabolismo , Humanos , Interleucina-1beta/metabolismo , Secretoglobinas/genética , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Regulação para Cima/genética , Receptor fas/metabolismo
16.
JAMA Netw Open ; 2(5): e193348, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31050781

RESUMO

Importance: Thyrotoxic periodic paralysis (TPP) is a potentially lethal complication of hyperthyroidism. However, only 1 specific susceptibility locus for TPP has been identified. Additional genetic determinants should be detected so that a prediction model can be constructed. Objective: To investigate the genetic architecture of TPP and distinguish TPP from Graves disease cohorts. Design, Setting, and Participants: This population-based case-control study used a 2-stage genome-wide association study to investigate the risk loci of TPP and weighted genetic risk score to construct a TPP prediction model with data from a Chinese Han population recruited in hospitals in China from March 2003 to December 2015. The analysis was conducted from November 2014 to August 2016. Main Outcomes and Measures: Loci specifically associated with TPP risk and those shared with Graves disease and prediction model of joint effects of TPP-specific loci. Results: A total of 537 patients with TPP (mean [SD] age, 35 [11] years; 458 male) 1519 patients with Graves disease and no history of TPP (mean [SD] age, 38 [13] years; 366 male), and 3249 healthy participants (mean [SD] age, 46 [10] years; 1648 male) were recruited from the Han population by hospitals throughout China. Two new TPP-specific susceptibility loci were identified: DCHS2 on 4q31.3 (rs1352714: odds ratio [OR], 1.58; 95% CI, 1.35-1.85; P = 1.24 × 10-8) and C11orf67 on 11q14.1 (rs2186564: OR, 1.50; 95% CI, 1.29-1.74; P = 2.80 × 10-7). One previously reported specific locus was confirmed on 17q24.3 near KCNJ2 (rs312729: OR, 2.08; 95% CI, 1.83-2.38; P = 8.02 × 10-29). Meanwhile, 2 risk loci (MHC and Xq21.1) were shared by Graves disease and TPP. After 2 years of treatment, the ratio of persistent thyrotropin receptor antibody positivity was higher in patients with TPP than in patients with Graves disease and no history of TPP (OR, 3.82; 95% CI, 2.04-7.16; P = 7.05 × 10-6). The prediction model using a weighted genetic risk score and 11 candidate TPP-specific single-nucleotide polymorphisms had an area under the curve of 0.80. Conclusions and Relevance: These findings provide evidence that TPP is a novel molecular subtype of Graves disease. The newly identified loci, along with other previously reported loci, demonstrate the growing complexity of the heritable contribution to TPP pathogenesis. A complete genetic architecture will be helpful to understand the pathophysiology of TPP, and a useful prediction model could prevent the onset of TPP.


Assuntos
Doença de Graves/genética , Crise Tireóidea/genética , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China , Estudos Transversais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Paralisia/genética , Polimorfismo de Nucleotídeo Único
17.
Zhongguo Zhong Yao Za Zhi ; 44(3): 500-508, 2019 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-30989915

RESUMO

This Paper aimed to analyze and identify the chemical constituents from the seeds of Celosia argentea by UPLC-ESI-Q-TOF-MS. The analysis was performed on an ACQUITY HSS T3 reverse phase column(2.1 mm ×100 mm, 1.8 µm). The mobile phase consisting of 0.1% formic acid acetonitrile and 0.1% aqueous formic acid was used for gradient elution, and the flow rate was 0.4 mL·min~(-1). Mass spectrometry was applied for the qualitative analysis under positive and negative ionization modes and ESI ion source. Data was analyzed by Masslynx 4.1 software, literatures in SciFinder database, and standards. A total of 49 compounds, including 14 triterpenoids, 17 flavonoids, 11 cyclic peptides, 2 phenols, 2 organic acids, and 3 steroids were putatively identified. Among them, 19 compounds were firstly reported from this species. In-depth chemical constituent analysis for the seeds of C. argentea were accomplished here, and the findings could lay a good foundation for its quality control and clarifying the material basis of its efficacy.


Assuntos
Celosia/química , Compostos Fitoquímicos/análise , Sementes/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização por Electrospray
18.
J Clin Endocrinol Metab ; 104(6): 2121-2130, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649410

RESUMO

CONTEXT: Graves disease (GD) is a common thyroid-specific autoimmune disease and one of the most heritable diseases in the population. We present a risk-prediction model, including confirmed, known genetic variants associated with GD. DESIGN: To construct a stable-prediction model, we used known GD susceptibility single nucleotide polymorphisms (SNPs) as markers and trained and tested our model in a cohort of 4897 patients with GD and 5098 healthy controls. We weighted the contribution of each SNP to the disease to calculate the weighted genetic risk score (wGRS) for each individual. The efficiency of this model can be estimated by the area under the curve (AUC) receiver operator characteristic curve and the specificity and sensitivity of each wGRS. RESULTS: With the 20 confirmed GD risk-related SNPs, our wGRS-prediction model could predict patients with GD from the general population (AUC 0.70 [95% CI: 0.69 to 0.71]) and did especially well in predicting patients with GD with persisting thyroid-stimulating hormone receptor antibody positive [pTRAb+; AUC 0.74 (95% CI: 0.72 to 0.76)]. We also evaluated how the four pTRAb+ specific risk SNPs predicted patients with GD with pTRAb+ among all patients with GD [AUC 0.62 (95% CI: 0.61 to 0.63)]. For clinical use, we partitioned subjects in each set into different risk categories to generate the wGRS cutoff of high risk for reference. CONCLUSIONS: Our study provides an approach to predict GD risk in the general population by the calculation of the wGRS of 20 known GD susceptibility variants. The wGRS-prediction model was more stable and convenient, whereas the prediction performance was still modest.


Assuntos
Predisposição Genética para Doença , Doença de Graves/genética , Polimorfismo de Nucleotídeo Único , Área Sob a Curva , Epistasia Genética , Doença de Graves/etiologia , Humanos , Modelos Logísticos , Risco
19.
Clin Endocrinol (Oxf) ; 89(6): 840-848, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30176063

RESUMO

OBJECTIVE: We aimed to investigate the six susceptibility loci of GD identified from European population in Chinese Han population and further to estimate the genetic heterogeneity of them in stratification of our GD patients. DESIGN: Dense mapping studies based on GWAS. PATIENTS: A total of 1536 GD patients and 1516 controls in GWAS stage and 1994 GD patients and 2085 controls and 5033 GD patients and 5389 controls in two replication stages. MEASUREMENTS: Based on our previous GWAS data, independently GD-associated SNPs in each region were identified by TagSNP analysis and logistic regression analysis. The association of these SNPs was investigated in 1994 GD patients and 2085 controls, and then, the significantly associated SNPs (P < 0.05) were further genotyped in a second cohort including 5033 GD patients and 5389 controls. RESULTS: After the first replication stage, four SNPs from three regions with Pfirst  < 0.05 were further selected and genotyped in another independent cohort. The association of two SNPs with GD was confirmed in combined Chinese cohorts: rs12575636 at 11q21 (Pcombined  = 7.55 × 10-11 , OR = 1.27) and rs1881145 in TRIB2 at 2p25.1 (Pcombined  = 5.59 × 10-8 , OR = 1.14). Further study disclosed no significant difference for these SNPs between GD subsets. However, eQTL data revealed that SESN3 could be a potential susceptibility gene of GD in 11q21 region. CONCLUSIONS: Out of the six susceptibility loci of GD identified from European population, two risk loci were confirmed in a large Chinese Han population. There is variability in GD genetic susceptibility in different ethnic groups. SESN3 is a potential susceptible gene of GD in 11q21.


Assuntos
Doença de Graves/epidemiologia , Doença de Graves/genética , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
20.
Eur J Endocrinol ; 178(6): 623-633, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29650690

RESUMO

OBJECTIVE: Congenital hypothyroidism (CH), the most common neonatal metabolic disorder, is characterized by impaired neurodevelopment. Although several candidate genes have been associated with CH, comprehensive screening of causative genes has been limited. DESIGN AND METHODS: One hundred ten patients with primary CH were recruited in this study. All exons and exon-intron boundaries of 21 candidate genes for CH were analyzed by next-generation sequencing. And the inheritance pattern of causative genes was analyzed by the study of family pedigrees. RESULTS: Our results showed that 57 patients (51.82%) carried biallelic mutations (containing compound heterozygous mutations and homozygous mutations) in six genes (DUOX2, DUOXA2, DUOXA1, TG, TPO and TSHR) involved in thyroid hormone synthesis. Autosomal recessive inheritance of CH caused by mutations in DUOX2, DUOXA2, TG and TPO was confirmed by analysis of 22 family pedigrees. Notably, eight mutations in four genes (FOXE1, NKX2-1, PAX8 and HHEX) that lead to thyroid dysgenesis were identified in eight probands. These mutations were heterozygous in all cases and hypothyroidism was not observed in parents of these probands. CONCLUSIONS: Most cases of congenital hypothyroidism in China were caused by thyroid dyshormonogenesis rather than thyroid dysgenesis. This study identified previously reported causative genes for 57/110 Chinese patients and revealed DUOX2 was the most frequently mutated gene in these patients. Our study expanded the mutation spectrum of CH in Chinese patients, which was significantly different from Western countries.


Assuntos
Povo Asiático/genética , Hipotireoidismo Congênito/genética , China , Oxidases Duais/genética , Feminino , Fatores de Transcrição Forkhead/genética , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Humanos , Lactente , Recém-Nascido , Iodeto Peroxidase/genética , Masculino , Proteínas de Membrana/genética , Mutação , Fator de Transcrição PAX8/genética , Linhagem , Receptores da Tireotropina/genética , Análise de Sequência de DNA , Tireoglobulina/genética , Disgenesia da Tireoide/genética , Fator Nuclear 1 de Tireoide/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...