Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Sci Rep ; 14(1): 15148, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956223

RESUMO

Diabetic retinopathy (DR) is a serious complication of diabetes featuring abnormal lipid metabolism. However, the specific lipid molecules associated with onset and progression remain unclear. We used a broad-targeted lipidomics approach to assess the lipid changes that occur before the proliferative retinopathy stage and to identify novel lipid biomarkers to distinguish between patients without DR (NDR) and with non-proliferative DR (NPDR). Targeted lipomics analysis was carried out on serum samples from patients with type I diabetes, including 20 NDRs and 20 NPDRs. The results showed that compared with the NDR group, 102 lipids in the NPDR group showed specific expressions. Four lipid metabolites including TAG58:2-FA18:1 were obtained using the Least Absolute Shrink And Selection Operator (LASSO) and Support Vector Machine Recursive Feature Elimination (SVM-RFE) methods. The four-lipid combination diagnostic models showed good predictive ability in both the discovery and validation sets, and were able to distinguish between NDR patients and NPDR patients. The identified lipid markers significantly improved diagnostic accuracy within the NPDR group. Our findings help to better understand the complexity and individual differences of DR lipid metabolism.


Assuntos
Biomarcadores , Retinopatia Diabética , Lipidômica , Lipídeos , Humanos , Retinopatia Diabética/sangue , Retinopatia Diabética/diagnóstico , Biomarcadores/sangue , Lipidômica/métodos , Masculino , Feminino , Lipídeos/sangue , Pessoa de Meia-Idade , Adulto , Metabolismo dos Lipídeos , Diabetes Mellitus Tipo 1/sangue
2.
Front Immunol ; 15: 1409461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979425

RESUMO

Primary immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by the destruction of platelets. Although it was long believed that the critical role of autoantibodies in platelet destruction, primarily through the Fc-dependent platelet clearance pathway, recent findings indicate that the significance of the Fc-independent platelet clearance pathway mediated by hepatocytes, thus shedding light on a previously obscure aspect of ITP pathogenesis. Within this context, the desialylation of platelets has emerged as a pivotal biochemical marker. Consequently, targeting platelet desialylation emerges as a novel therapeutic strategy in the pathogenesis of ITP. Notably, prevailing research has largely focused on antiplatelet antibodies and the glycosylation-associated mechanisms of platelet clearance, while comprehensive analysis of platelet desialylation remains scant. In response, we retrospectively discuss the historical progression, inducing factors, generation process, and molecular regulatory mechanisms underlying platelet desialylation in ITP pathogenesis. By systematically evaluating the most recent research findings, we contribute to a comprehensive understanding of the intricate processes involved. Moreover, our manuscript delves into the potential application of desialylation regulatory strategies in ITP therapy, heralding novel therapeutic avenues. In conclusion, this manuscript not only fills a critical void in existing literature but also paves the way for future research by establishing a systematic theoretical framework. By inspiring new research ideas and offering insights into the development of new therapeutic strategies and targeted drugs, our study is poised to significantly advance the clinical management of ITP.


Assuntos
Biomarcadores , Plaquetas , Púrpura Trombocitopênica Idiopática , Humanos , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/terapia , Plaquetas/metabolismo , Plaquetas/imunologia , Animais , Autoanticorpos/sangue , Autoanticorpos/imunologia , Glicosilação
3.
Artigo em Inglês | MEDLINE | ID: mdl-38717638

RESUMO

BACKGROUND: Cardiac hypertrophy is the common pathological process of multiple cardiovascular diseases. However, the molecular mechanisms of cardiac hypertrophy are unclear. Long non-coding RNA (lncRNA), a newly discovered type of transcript that has been demonstrated to function as crucial regulators in the development of cardiovascular diseases. This study revealed a novel regulatory pathway of lncRNA in cardiac hypertrophy. METHODS: The cardiac hypertrophy models were established by transverse aortic constriction (TAC) in mice and angiotensin II (Ang II) in HL-1 cardiomyocytes. Adeno-associated virus 9 (AAV9) in vivo and lncRNA Gm15834 and shRNA plasmids in vitro were used to overexpress and knock down lncRNA Gm15834. The myocardial tissue structure, cardiomyocyte area, cardiac function, protein expressions, and binding of lncRNA Gm15834 and Src-associated substrate during mitosis of 68 KDa (Sam68) were detected by hematoxylin and eosin (HE) staining, immunofluorescence staining, echocardiography, western blot and RNA immunoprecipitation (RIP), respectively. RESULTS: In cardiac hypertrophy models, inhibiting lncRNA Gm15834 could decrease Sam68 expression and nuclear factor kappa-B (NF-κB) mediated inflammatory activities in vivo and in vitro, but overexpressing lncRNA Gm15834 showed the opposite results. RIP experiments validated the binding activities between lncRNA Gm15834 and Sam68. Overexpression of Sam68 could counteract the anti-hypertrophy effects of lncRNA Gm15834 knockdown. Meanwhile, in vivo inhibition of lncRNA Gm15834 could inhibit Sam68 expression, reduce NF-κB mediated inflammatory activity and attenuate cardiac hypertrophy. CONCLUSION: Our study revealed a novel regulatory axis of cardiac hypertrophy, which comprised lncRNA Gm15834/Sam68/NF-κB/inflammation, shedding a new light for identifying therapy target of cardiac hypertrophy in clinic.

4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167140, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548092

RESUMO

Heart failure (HF) is one of the major causes of death among diabetic patients. Although studies have shown that curcumin analog C66 can remarkably relieve diabetes-associated cardiovascular and kidney complications, the role of SJ-12, SJ-12, a novel curcumin analog, in diabetic cardiomyopathy and its molecular targets are unknown. 7-week-old male C57BL/6 mice were intraperitoneally injected with single streptozotocin (STZ) (160 mg/kg) to develop diabetic cardiomyopathy (DCM). The diabetic mice were then treated with SJ-12 via gavage for two months. Body weight, fast blood glucose, cardiac utrasonography, myocardial injury markers, pathological morphology of the heart, hypertrophic and fibrotic markers were assessed. The potential target of SJ-12 was evaluated via RNA-sequencing analysis. The O-GlcNAcylation levels of SP1 were detected via immunoprecipitation. SJ-12 effectively suppressed myocardial hypertrophy and fibrosis, thereby preventing heart dysfunction in mice with STZ-induced heart failure. RNA-sequencing analysis revealed that SJ-12 exerted its therapeutic effects through the modulation of the calcium signaling pathway. Furthermore, SJ-12 reduced the O-GlcNAcylation levels of SP1 by inhibiting O-linked N-acetylglucosamine transferase (OGT). Also, SJ-12 stabilized Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2a (SERCA2a), a crucial regulator of calcium homeostasis, thus reducing hypertrophy and fibrosis in mouse hearts and cultured cardiomyocytes. However, the anti-fibrotic effects of SJ-12 were not detected in SERCA2a or OGT-silenced cardiomyocytes, indicating that SJ-12 can prevent DCM by targeting OGT-dependent O-GlcNAcylation of SP1.These findings indicate that SJ-12 can exert cardioprotective effects in STZ-induced mice by reducing the O-GlcNAcylation levels of SP1, thus stabilizing SERCA2a and reducing myocardial fibrosis and hypertrophy. Therefore, SJ-12 can be used for the treatment of diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Camundongos Endogâmicos C57BL , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Animais , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/tratamento farmacológico , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Masculino , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Estreptozocina , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fibrose , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Sinalização do Cálcio/efeitos dos fármacos
5.
Cell Mol Immunol ; 21(3): 275-291, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267694

RESUMO

STING (also known as MITA) is an adaptor protein that mediates cytoplasmic DNA-triggered signaling, and aberrant activation of STING/MITA by cytosolic self-DNA or gain-of-function mutations causes severe inflammation. Here, we show that STING-mediated inflammation and autoimmunity are promoted by RNF115 and alleviated by the RNF115 inhibitor disulfiram (DSF). Knockout of RNF115 or treatment with DSF significantly inhibit systemic inflammation and autoimmune lethality and restore immune cell development in Trex1-/- mice and STINGN153S/WT bone marrow chimeric mice. In addition, knockdown or pharmacological inhibition of RNF115 substantially downregulate the expression of IFN-α, IFN-γ and proinflammatory cytokines in PBMCs from patients with systemic lupus erythematosus (SLE) who exhibit high concentrations of dsDNA in peripheral blood. Mechanistically, knockout or inhibition of RNF115 impair the oligomerization and Golgi localization of STING in various types of cells transfected with cGAMP and in organs and cells from Trex1-/- mice. Interestingly, knockout of RNF115 inhibits the activation and Golgi localization of STINGN153S as well as the expression of proinflammatory cytokines in myeloid cells but not in endothelial cells or fibroblasts. Taken together, these findings highlight the RNF115-mediated cell type-specific regulation of STING and STINGN153S and provide potential targeted intervention strategies for STING-related autoimmune diseases.


Assuntos
Doenças Autoimunes , Autoimunidade , Humanos , Camundongos , Animais , Dissulfiram/farmacologia , Células Endoteliais/metabolismo , Camundongos Knockout , Inflamação , Doenças Autoimunes/tratamento farmacológico , Citocinas/metabolismo , DNA , Ubiquitina-Proteína Ligases
6.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256942

RESUMO

Interleukins, a diverse family of cytokines produced by various cells, play crucial roles in immune responses, immunoregulation, and a wide range of physiological and pathological processes. In the context of megakaryopoiesis, thrombopoiesis, and platelet function, interleukins have emerged as key regulators, exerting significant influence on the development, maturation, and activity of megakaryocytes (MKs) and platelets. While the therapeutic potential of interleukins in platelet-related diseases has been recognized for decades, their clinical application has been hindered by limitations in basic research and challenges in drug development. Recent advancements in understanding the molecular mechanisms of interleukins and their interactions with MKs and platelets, coupled with breakthroughs in cytokine engineering, have revitalized the field of interleukin-based therapeutics. These breakthroughs have paved the way for the development of more effective and specific interleukin-based therapies for the treatment of platelet disorders. This review provides a comprehensive overview of the effects of interleukins on megakaryopoiesis, thrombopoiesis, and platelet function. It highlights the potential clinical applications of interleukins in regulating megakaryopoiesis and platelet function and discusses the latest bioengineering technologies that could improve the pharmacokinetic properties of interleukins. By synthesizing the current knowledge in this field, this review aims to provide valuable insights for future research into the clinical application of interleukins in platelet-related diseases.

7.
J Agric Food Chem ; 72(1): 715-725, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123485

RESUMO

Cd pollution-safe cultivar (Cd-PSC) is a feasible strategy to minimize Cd contamination in leafy vegetables. The shoot Cd concentrations of 23 Lactuca sativa cultivars under Cd stress ranged from 0.124 to 2.155 mg·kg-1 with a maximum cultivar difference of 8 folds. Typical Cd-PSC C16 (L) and high-Cd-accumulating cultivar C13 (H) were screened to investigate the mechanisms of Cd accumulations in L. sativa through determining Cd concentrations, Cd subcellular distributions, phytochelatin profiles, and phytochelatin biosynthesis-related genes' expressions. Higher Cd distribution in a heat stable fraction in C13 (H) indicated that the high Cd accumulation trait of C13 (H) mainly depended on the Cd-phytochelatin complexes. Root phytochelatin concentrations were significantly elevated in C13 (H) (5.83 folds) than in C16 (L) (2.69 folds) (p < 0.05) under Cd stress. Significantly downregulated expressions of glutathione S-transferase rather than the regulation of phytochelatin synthesis genes in the root of C13 (H) might be responsible for sufficient glutathione supply for phytochelatins synthesis. These findings suggested that phytochelatin elevation in C13 (H) would favor the Cd root to shoot transportation, which provides new insights into the phytochelatin-related cultivar-dependent Cd accumulating characteristic in L. sativa.


Assuntos
Fitoquelatinas , Poluentes do Solo , Fitoquelatinas/metabolismo , Cádmio/metabolismo , Lactuca/genética , Poluentes do Solo/metabolismo , Raízes de Plantas/química
8.
Cell Death Discov ; 9(1): 466, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114486

RESUMO

Research suggests that ischemic glycolysis improves myocardial tolerance to anoxia and low-flow ischemia. The rate of glycolysis during ischemia reflects the severity of the injury caused by ischemia and subsequent functional recovery following reperfusion. Histone H2AK119 ubiquitination (H2Aub) is a common modification that is primarily associated with gene silencing. Recent studies have demonstrated that H2Aub contributes to the development of cardiovascular diseases. However, the underlying mechanism remains unclear. This study identified Hsp27 (heat shock protein 27) as a H2Aub binding protein and explored its involvement in mediating glycolysis and mitochondrial function. Functional studies revealed that inhibition of PRC1 (polycomb repressive complex 1) decreased H2Aub occupancy and promoted Hsp27 expression through inhibiting ubiquitination. Additionally, it increased glycolysis by activating the NF-κB/PFKFB3 signaling pathway during myocardial ischemia. Furthermore, Hsp27 reduced mitochondrial ROS production by chaperoning COQ9, and suppressed ferroptosis during reperfusion. A delivery system was developed based on PCL-PEG-MAL (PPM)-PCM-SH (CWLSEAGPVVTVRALRGTGSW) to deliver PRT4165 (PRT), a potent inhibitor of PRC1, to damaged myocardium, resulting in decreased H2Aub. These findings revealed a novel epigenetic mechanism connecting glycolysis and ferroptosis in protecting the myocardium against ischemia/reperfusion injury.

9.
BMC Psychiatry ; 23(1): 861, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990205

RESUMO

BACKGROUND: Medical university students are confronted with unprecedented uncertainty and stress compared with their peers. Research has explored the effect of intolerance of uncertainty on perceived stress, but little attention was paid to investigate the mediating mechanisms behind this relationship, especially among medical university students. The aim of this study was to examine whether psychological resilience and neuroticism played a mediating role between medical university students' intolerance of uncertainty and perceived stress. METHODS: A total of 717 medical university students from Chongqing in Southwest China were recruited to participate in our study and completed demographic information, Intolerance of Uncertainty Scale Short Version (IUS-12), Chinese Version of Perceived Stress Scale (CPSS), Connor-Davidson Resilience Scale-10 (CD-RISC-10) and Eysenck Personality Questionnaire (EPQ). RESULTS: (1) Significant correlations between intolerance of uncertainty, perceived stress, psychological resilience and neuroticism were found. (2) Intolerance of uncertainty affected medical university students' perceived stress via three paths: the mediating effect of psychological resilience, the mediating effect of neuroticism, and the chain mediating effect of both psychological resilience and neuroticism. CONCLUSIONS: Intolerance of uncertainty could directly affect the perceived stress of medical university students, and also affected perceived stress through the mediating roles of psychological resilience and neuroticism, as well as through the chain mediating role of these two variables.


Assuntos
Resiliência Psicológica , Estudantes de Medicina , Humanos , Neuroticismo , Universidades , Incerteza , Estudantes de Medicina/psicologia , China , Estresse Psicológico/psicologia
10.
Biomed Pharmacother ; 168: 115660, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806092

RESUMO

Diabetic kidney disease (DKD) is one of the severe complications of diabetes mellitus-related microvascular lesions, which remains the leading cause of end-stage kidney disease. The genesis and development of DKD is closely related to inflammation. Myeloid differentiation 2 (MD2) mediates hyperlyciemia-induced renal inflammation and DKD development and is considered as a potential therapeutic target of DKD. Here, we identified a new small-molecule MD2 inhibitor, JM-9. In vitro, JM-9 suppressed high glucose (HG) and palmitic acid (PA)-induced inflammation in MPMs, accompanied by inhibition of MD2 activation and the downstream TLR4/MyD88-MAPKs/NFκB pro-inflammatory signaling pathway. Macrophage-derived factors increased the fibrotic and inflammatory responses in renal tubular epithelial cells, which were inhibited by treating macrophages with JM-9. Then, we investigated the therapeutic effects against DKD in streptozotocin-induced type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) mouse models. Treatment with JM-9 prevented renal inflammation, fibrosis, and dysfunction by targeting MD2 in both T1DM and T2DM models. Our results show that JM-9, a new small-molecule MD2 inhibitor, protects against DKD by targeting MD2 and inhibiting MD2-mediated inflammation. In summary, JM-9 is a potential therapeutic agent for DKD.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Nefrite , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Inflamação/tratamento farmacológico
11.
Int Immunopharmacol ; 124(Pt A): 110863, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37703787

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus and is associated with increased morbidity and mortality due to cardiac dysfunction. Chronic inflammation plays a significant role in the development of DCM, making it a promising target for novel pharmacological strategies. Our previous study has synthesized a novel compound, c17, which exhibited strong anti-inflammatory activity by specifically targeting to myeloid differentiation primary response 88 (MyD88). In this study, we evaluated the therapeutic effect of c17 in DCM. METHODS: The small molecular selective MyD88 inhibitor, c17, was used to evaluate the effect of MyD88 on DCM in both high concentration of glucose- and palmitic acid-stimulated macrophages and streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM) mice. RESULTS: The treatment of c17 in T1DM mice resulted in improved heart function and reduced cardiac hypertrophy, inflammation and fibrogenesis. RNA sequencing analysis of the heart tissues revealed that c17 effectively suppressed the inflammatory response by regulating the MyD88-dependent pathway. Co-immunoprecipitation experiments further confirmed that c17 disrupted the interaction between MyD88 and Toll-like receptor 4 (TLR4), consequently inhibiting downstream NF-κB activation. In vitro studies demonstrated that c17 exhibited similar anti-inflammatory activity by targeting MyD88 in macrophages, which are the primary regulators of cardiac inflammation. Furthermore, conditioned medium derived from c17-treated macrophages showed reduced capacity to induce hypertrophy, pro-fibrotic reactions, and secondary inflammation in cardiomyocytes. CONCLUSIONS: In conclusion, the small-molecule MyD88 inhibitor, c17, effectively combated the inflammatory DCM, therefore could be a potential candidate for the treatment of this disease.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Cardiomiopatias Diabéticas , Miocardite , Animais , Camundongos , Anti-Inflamatórios/efeitos adversos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Fator 88 de Diferenciação Mieloide/efeitos dos fármacos , Miocardite/tratamento farmacológico , NF-kappa B/metabolismo , Estreptozocina
12.
Food Chem Toxicol ; 179: 113954, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481228

RESUMO

Arsenic contamination of groundwater remains a serious public health problem worldwide. Arsenic-induced neurotoxicity receives increasing attention, however, the mechanism remains unclear. Hippocampal neuronal death is regarded as the main event of arsenic-induced cognitive dysfunction. Mitochondria lesion is closely related to cell death, however, the effects of arsenic on PGAM5-regulated mitochondrial dynamics has not been documented. Crosstalk between autophagy and apoptosis is complicated and autophagy has a dual role in the apoptosis pathways in neuronal cells. In this study, arsenic exposure resulted in mitochondrial PGAM5 activation and subsequent activation of apoptosis and AMPK-mTOR dependent autophagy. Intervention by autophagy activator Rapamycin or inhibitor 3-MA, both targeting at mTOR, accordingly induced activation or inhibition of apoptosis. Intervention by MK-3903 or dorsomorphin, activator or inhibitor of AMPK, received similar results. Our findings suggested that arsenic-induced PGAM5 activation played a role in AMPK-mTOR dependent autophagy and arsenic induced autophagy-dependent apoptosis in hippocampal neurons via AMPK/mTOR signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Arsênio , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia , Neurônios , Hipocampo
13.
Eur J Pharmacol ; 953: 175822, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37277029

RESUMO

Long non-coding RNAs (lncRNAs) are expressed aberrantly in cardiac disease, but their roles in cardiac hypertrophy are still unknown. Here we sought to identify a specific lncRNA and explore the mechanisms underlying lncRNA functions. Our results revealed that lncRNA Snhg7 was a super-enhancer-driven gene in cardiac hypertrophy by using chromatin immunoprecipitation sequencing (ChIP-seq). We next found that lncRNA Snhg7 induced ferroptosis by interacting with T-box transcription factor 5 (Tbx5), a cardiac transcription factor. Moreover, Tbx5 bound to the promoter of glutaminase 2 (GLS2) and regulated cardiomyocyte ferroptosis activity in cardiac hypertrophy. Importantly, extra-terminal domain inhibitor JQ1 could suppress super-enhancers in cardiac hypertrophy. Inhibition of lncRNA Snhg7 could block the expressions of Tbx5, GLS2 and levels of ferroptosis in cardiomyocytes. Furthermore, we verified that Nkx2-5 as a core transcription factor, directly bound the super-enhancer of itself and lncRNA Snhg7, increasing both of their activation. Collectively, we are the first to identify lncRNA Snhg7 as a novel functional lncRNA in cardiac hypertrophy, might regulate cardiac hypertrophy via ferroptosis. Mechanistically, lncRNA Snhg7 could transcriptionally regulate Tbx5/GLS2/ferroptosis in cardiomyocytes.


Assuntos
Ferroptose , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Fatores de Transcrição/metabolismo , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , Glutaminase/metabolismo
14.
J Antimicrob Chemother ; 78(4): 946-952, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36760083

RESUMO

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become established in the human population, making the need to develop safe and effective treatments critical. We have developed the small-molecule antiviral ensitrelvir, which targets the 3C-like (3CL) protease of SARS-CoV-2. This study evaluated the in vitro and in vivo efficacy of ensitrelvir compared with that of another SARS-CoV-2 3CL PI, nirmatrelvir. METHODS: Cultured cells, BALB/cAJcl mice and Syrian hamsters were infected with various SARS-CoV-2 strains, including the ancestral strain WK-521, mouse-adapted SARS-CoV-2 (MA-P10) strain, Delta strain and Omicron strain. Ensitrelvir efficacy was compared with that of nirmatrelvir. Effective concentrations were determined in vitro based on virus-induced cytopathic effects, viral titres and RNA levels. Lung viral titres, nasal turbinate titres, body-weight changes, and animal survival were also monitored. RESULTS: Ensitrelvir and nirmatrelvir showed comparable antiviral activity in multiple cell lines. Both ensitrelvir and nirmatrelvir reduced virus levels in the lungs of mice and the nasal turbinates and lungs of hamsters. However, ensitrelvir demonstrated comparable or better in vivo efficacy than that of nirmatrelvir when present at similar or slightly lower unbound-drug plasma concentrations. CONCLUSIONS: Direct in vitro and in vivo efficacy comparisons of 3CL PIs revealed that ensitrelvir demonstrated comparable in vitro efficacy to that of nirmatrelvir in cell culture and exhibited equal to or greater in vivo efficacy in terms of unbound-drug plasma concentration in both animal models evaluated. The results suggest that ensitrelvir may become an important resource for treating individuals infected with SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Inibidores de Proteases/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico
15.
Acta Pharmacol Sin ; 44(1): 120-132, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35689091

RESUMO

The innate immune response and inflammation contribute to hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). Dectin-1 is a pathogen recognition receptor in innate immunity. In this study, we investigated the role of Dectin-1 in the pathogenesis of NAFLD. We first showed that Dectin-1 expression was significantly elevated in liver tissues of patients with NASH. NAFLD was induced in mice by feeding high fat diet (HFD) for 24 weeks. At the end of treatment, mice were sacrificed, and their blood and liver tissues were collected for analyses. We showed HFD feeding also increased liver Dectin-1 levels in mice, associated with macrophage infiltration. Either gene knockout or co-administration of a Dectin-1 antagonist laminarin (150 mg/kg twice a day, ip, from 16th week to 24th week) largely protected the livers from HFD-induced lipid accumulation, fibrosis, and elaboration of inflammatory responses. In primary mouse peritoneal macrophages (MPMs), challenge with palmitate (PA, 200 µM), an abundant saturated fatty acid found in NAFLD, significantly activated Dectin-1 signaling pathway, followed by transcriptionally regulated production of pro-inflammatory cytokines. Dectin-1 was required for hepatic macrophage activation and inflammatory factor induction. Condition media generated from Dectin-1 deficient macrophages failed to cause hepatocyte lipid accumulation and hepatic stellate activation. In conclusion, this study provides the primary evidence supporting a deleterious role for Dectin-1 in NAFLD through enhancing macrophage pro-inflammatory responses and suggests that it can be targeted to prevent inflammatory NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ativação de Macrófagos , Fígado/metabolismo , Lipídeos , Camundongos Endogâmicos C57BL
16.
Exp Eye Res ; 226: 109334, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435207

RESUMO

Retinal microvascular endothelial cell (RMEC) injury plays an important role in the pathophysiology diabetic retinopathy (DR). The GTPase dynamin-related protein 1 (Drp1), crucial to mitochondrial dynamics, has been implicated in hyperglycaemia-induced microvascular damage. Moreover, Drp1 can be deSUMOylated by the enzyme sentrin/SUMO-specific protease 3 (SENP3). Whether SENP3/deSUMOylated Drp1 can aggravate DR is unclear. Therefore, we designed this experiment to investigate the role of SENP3/desumoylated Drp1 in DR in vitro and in vivo. Murine RMECs (mRMECs) were classified into a control (CON), high-glucose (HG) and high-glucose + SENP3-siRNA (HG-siRNA) groups. The SENP3 and SUMOylated/deSUMOylated drp1 levels, mitochondrial morphology, mitochondrial membrane potential (MMP) and apoptosis rate were evaluated. In vivo, mice were assigned to a normal, type 2 diabetic or type 2 diabetic SENP3-siRNA mouse groups. Then, blood-retinal barrier function and retinal tissue structure were evaluated. As compared to those in the control group, the SENP3 and Drp1 levels, degree of mitochondrial fragmentation, extent of MMP loss and apoptosis rate of mRMECs were significantly increased in the HG group. However, inhibited SENP3 expression increased the level of SUMOylated Drp1 in the mRMECs and reduced the hyperglycaemia-induced mitochondrial damage and apoptosis rate. These experimental results were confirmed by diabetic animal experiments showing that inhibited SENP3 expression attenuated the increase in retinal permeability and diabetic retinopathy, suggesting that SENP3/deSUMOylated Drp1 activation aggravated DR by disrupting mitochondrial dynamics and apoptosis. Furthermore, blocking SENP3 expression significantly attenuated RMEC damage and DR.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Hiperglicemia , Camundongos , Animais , Retinopatia Diabética/metabolismo , Dinaminas/metabolismo , Apoptose , Hiperglicemia/complicações , RNA Interferente Pequeno , Glucose
17.
Int Immunopharmacol ; 115: 109587, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565558

RESUMO

BACKGROUND: The prevalence of non-alcoholic fatty liver disease (NAFLD) has been deemed a leading cause of end-stage liver disease. As a member of the mitogen-activated protein kinase family, c-Jun N-terminal kinase (JNK) has been shown to play an important role in the pathogenesis of NAFLD. Here, we identified a novel JNK inhibitor, JM-2, and evaluated its therapeutic effects against NAFLD both in vitro and in vivo. METHODS: In vitro, JNK was blocked by JM-2 in PA-challenged hepatocytes. C57BL/6 mice were fed a high-fat diet for 6 months to develop NAFLD. Mice were treated with JM-2 by intragastric administration. RESULTS: In primary hepatocytes and AML-12 cells, JM-2 treatment significantly suppressed palmitic acid (PA)-induced JNK activation and PA-induced inflammation and cell apoptosis. In addition, JM-2 restricted the production of fibrosis- and lipid metabolism-related genes in PA-challenged hepatocytes. We evaluated the curative effect of JM-2 against NAFLD using a high-fat diet (HFD)-fed mouse model. Based on our findings, JM-2 administration significantly protected the mouse liver from HFD-induced inflammation, lipid accumulation, fibrosis, and apoptosis, accompanied with reduced JNK phosphorylation in the liver tissue. CONCLUSION: JM-2 affords a significant protective effect against HFD-induced NAFLD by inhibiting JNK activation and is potential to be developed as a candidate drug for NAFLD treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado/patologia , Hepatócitos , Inflamação/metabolismo , Ácido Palmítico/efeitos adversos , Fibrose
18.
Zhongguo Zhong Yao Za Zhi ; 47(20): 5424-5433, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36471956

RESUMO

Three kinds of excipients were selected to investigate the anti-bitterness effect on the extremely bitter characteristics of Andrographis Herba decoction, and the optimal combined anti-bitterness formula was obtained. The preparation principle of different excipients was clarified by virtual screening and experimental verification to explore the advantages of the three kinds of excipients in the combined anti-bitterness effect. Sensory evaluation showed that mPEG_(2000)-PLLA_(2000), γ-cyclodextrin(γ-CD), and aspartame all had good anti-bitterness effect, which reduced the bitterness intensity of Andrographis Herba decoction by 0.5, 6, and 3 points, respectively. The anti-bitterness effect was superior when 0.15% mPEG_(2000)-PLLA_(2000), 1.60% γ-CD, and 0.04% aspartame were combined, and the taste score of the Andrographis Herba decoction decreased from 8 points(severe bitterness) to 1 point(almost no bitterness). Quantum chemistry calculations showed that mPEG_(2000)-PLLA_(2000) reduced the electrostatic potential of bitter groups, which spontaneously combined with it and formed a physical barrier, hindering the binding of bitter components to receptors. The interaction between γ-CD and bitter components was studied. It was found that the surface area and free energy of γ-CD decreased and the dipole moment increased, indicating that γ-CD included bitter components and self-assembled to form supramolecules. Molecular docking showed that hydroxy at position 14 and carbonyl at position 16 of andrographolide, and hydroxy at position 3 and 4, carbonyl at position 14, and five-membered lactone ring of dehydrated andrographolide were possibly the main bitter groups. The binding free energies of aspartame to bitter receptors TAS2 R10, TAS2 R14, and TAS2 R46 were-3.21,-1.55, and-2.52 kcal·mol~(-1), respectively, indicating that aspartame competed to inhibit the binding of bitter groups to bitter receptors. The results of content determination showed that the free amounts of andrographolide and dehydrated andrographolide in Andrographis Herba decoction were 0.23% and 0.28% respectively, while after adding flavor masking excipients, the dissociation amount of andrographolide and dehydrated andrographolide in the decoction decreased to 0.13% and 0.20%, respectively. The above results show that mPEG_(2000)-PLLA_(2000) involves some bitter components into it through micellar self-assembly to reconcile the entrance bitterness, and γ-CD includes the remaining bitter components in the real solution to control the main bitter taste. Aspartame further competes to inhibit the combination of bitter components and bitter receptors, and improves the taste to be sweet. Multi-excipients combined with anti-bitterness strategy significantly reduces the free concentration of bitter substances in Andrographis Herba decoction, and optimizes the taste of the decoction.


Assuntos
Andrographis , Paladar , Aspartame , Excipientes , Simulação de Acoplamento Molecular
19.
PLoS Biol ; 20(10): e3001813, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36194579

RESUMO

The reduced sleep duration previously observed in Camk2b knockout mice revealed a role for Ca2+/calmodulin-dependent protein kinase II (CaMKII)ß as a sleep-promoting kinase. However, the underlying mechanism by which CaMKIIß supports sleep regulation is largely unknown. Here, we demonstrate that activation or inhibition of CaMKIIß can increase or decrease sleep duration in mice by almost 2-fold, supporting the role of CaMKIIß as a core sleep regulator in mammals. Importantly, we show that this sleep regulation depends on the kinase activity of CaMKIIß. A CaMKIIß mutant mimicking the constitutive-active (auto)phosphorylation state promotes the transition from awake state to sleep state, while mutants mimicking subsequent multisite (auto)phosphorylation states suppress the transition from sleep state to awake state. These results suggest that the phosphorylation states of CaMKIIß differently control sleep induction and maintenance processes, leading us to propose a "phosphorylation hypothesis of sleep" for the molecular control of sleep in mammals.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cálcio , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Sono
20.
Biomed Pharmacother ; 154: 113590, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057221

RESUMO

Cardiac inflammation is an important pathological process in diabetic cardiomyopathy (DCM). Curcumin is a natural compound found in the rhizome of Curcuma longa and has been shown to possess multifunctional bioactivities. In the present study, we identified a new curcumin-derived compound, JM-2, and investigated its therapeutic effects against DCM in mouse models of streptozotocin-induced type 1 diabetes mellitus (T1DM) and HFD-induced type 2 diabetes (T2DM). Treatment with JM-2 (10 mg/kg) prevented cardiac functional and structural deficits effectively and reduced cardiac inflammation and fibrosis. JM-2 administration attenuated DCM by inhibiting nuclear factor kappa-B (NF-κB) activation in the heart of both models. In addition, treatment with JM-2 completely prevented the increase in proinflammatory factors and macrophage infiltration in T1DM and T2DM mice. RNA-seq analysis showed that the anti-inflammatory activity of JM-2 was associated with the inhibition of NF-κB activation. In vitro, JM-2 suppressed high glucose (HG)-induced myocardial hypertrophy and fibrosis in H9c2 cells, accompanied by inhibition of HG-induced NF-κB activation. Collectively, our results showed that JM-2, a new curcumin analog, provides strong protection against DCM via inhibition of the NF-κB-mediated inflammation. In summary, our data suggest that the curcumin analog JM-2 may be a potential therapeutic agent for DCM.


Assuntos
Curcumina , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatias Diabéticas , Animais , Curcumina/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Fibrose , Inflamação/metabolismo , Camundongos , Miócitos Cardíacos , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...