Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(31): 20483-20491, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34395995

RESUMO

In consideration of offshore oil spill accidents, a mechanical method is a kind of widely used treatment methods to recover spilled oil at sea. It also has the advantages of low cost, convenient use, and environmental friendliness. In order to improve the recovery efficiency and oil content of liquid recovered, a novel mechanical spilled oil recovery philosophy coupling surface vortex and hydrocyclone separation was proposed, and a small-scale prototype was manufactured. Medium crude from Bohai oil field was applied as spilled oil to test the recovery property of the prototype skimmer. The experiment results show that the novel skimmer is able to recover spilled oil effectively on the sea surface and speed up the process of recovery. Pressure of overflow pipe is sensitive to pump frequency, flow rate of inlet, and split ratio. In addition, oil content at the overflow port is influenced by spilled oil amount on the surface and split ratio. Besides, linear relationship is found between the recovery efficiency and the split ratio. The experimental study can provide a technical reference for the treatment of a small amount of spilled oil on the water surface and also has great significance for the design of spilled oil recovery equipment.

2.
Langmuir ; 34(8): 2685-2691, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29400977

RESUMO

A PdNi/RGO/polyoxometalate nanocomposite has been successfully synthesized by a simple wet-chemical method. Characterizations such as transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy are employed to verify the morphology, structure, and elemental composition of the as-prepared nanocomposite. Inspired by the fast-developing fuel cells, the electrochemical catalytic performance of the nanocomposite toward methanol and ethanol oxidation in alkaline media is further tested. Notably, the nanocomposite exhibits excellent catalytic activity and long-term stability toward alcohol electrooxidation compared with the PdNi/RGO and commercial Pd/C catalyst. Furthermore, the electrochemical results reveal that the prepared nanocomposite is attractive as a promising electrocatalyst for direct alcohol fuel cells, in which the phosphotungstic acid plays a crucial role in enhancing the electrocatalytic activities of the catalyst.

3.
RSC Adv ; 8(37): 20661-20668, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35542330

RESUMO

Herein, Mn3O4/reduced graphene oxide composites are prepared via a facile solution-phase method for supercapacitor application. Transmission electron microscopy results reveal the uniform distribution of Mn3O4 nanoparticles on graphene layers. The morphology of the Mn3O4 nanomaterial is changed by introducing the reduced graphene oxide during the preparation process. An asymmetric supercapacitor cell based on the Mn3O4/reduced graphene oxide composite with the weight ratio of 1 : 1 exhibits relatively superior charge storage properties with higher specific capacitance and larger energy density compared with those of pure reduced graphene oxide or Mn3O4. More importantly, the long-term stability of the composite with more than 90.3% capacitance retention after 10 000 cycles can ensure that the product is widely applied in energy storage devices.

4.
J Mol Model ; 17(9): 2305-11, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21523540

RESUMO

Hydrogen dissociative chemisorption and desorption on small lowest energy Ni(n) clusters up to n=13 as a function of H coverage was studied using density functional theory. H adsorption on the clusters was found to be preferentially at edge sites followed by 3-fold hollow sites and on-top sites. The minimum energy path calculations suggest that H(2) dissociative chemisorption is both thermodynamically and kinetically favorable and the H atoms on the clusters are mobile. Calculations on the sequential H(2) dissociative chemisorption on the clusters indicate that the edge sites are populated first and subsequently several on-top sites and hollow sites are also occupied upon full cluster saturation. In all cases, the average hydrogen capacity on Ni(n) clusters is similar to that of Pd(n) clusters but considerably smaller than that of Pt(n) clusters. Comparison of hydrogen dissociative chemisorption energies and H desorption energies at full H-coverage among the Ni family clusters was made.


Assuntos
Hidrogênio/química , Níquel/química , Paládio/química , Platina/química , Absorção , Simulação por Computador , Modelos Químicos , Estrutura Molecular , Teoria Quântica , Termodinâmica
5.
J Comput Chem ; 32(8): 1711-20, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21370241

RESUMO

Atomic force fields for simulating copper, silver, and gold clusters and nanoparticles are developed. Potential energy functions are obtained for both monatomic and binary metallic systems using an embedded atom method. Many cluster configurations of varying size and shape are used to constrain the parametrization for each system. Binding energies for these training clusters were computed using density functional theory (DFT) with the Perdew-Wang exchange-correlation functional in the generalized gradients approximation. Extensive testing shows that the many-body potentials are able to reproduce the DFT energies for most of the structures that were included in the training set. The force fields were used to calculate surface energies, bulk structures, and thermodynamic properties. The results are in good agreement with the DFT values and consistent with the available experimental data.

6.
Phys Chem Chem Phys ; 12(33): 9845-51, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20571621

RESUMO

Water dissociation on copper is one of the rate-limiting steps in the water-gas-shift (WGS) reaction. Copper atoms dispersed evenly from freshly made catalyst segregate to form clusters under the WGS operating conditions. Using density functional theory, we have examined water adsorption and dissociation on the smallest stable 3-dimensional copper cluster, Cu(7). Water molecules are adsorbed on the cluster sequentially until full saturation at which no direct water-copper contact is sterically possible. The adsorption is driven mainly by the overlap between the p-orbital of O atom occupied by the lone pair and the 3d-orbitals of copper, from which a fractional charge is promoted to the 4s-orbital to accommodate the charge transfer from water. Water dissociation on the Cu(7) cluster was investigated at both low and high water coverage. It was found that water dissociation into OH and H is exothermic but is inherently a high temperature process at low coverage. At high coverage, the reaction becomes more exothermic with fast kinetics. In both cases, water can catalyze the reaction. It was found that direct dissociation of the OH species is endothermic with a significantly higher barrier at both low and high coverage. However, the OH species can readily react with another adjacent hydroxyl group to form an O adatom and water molecule. Our studies indicate that the basic chemical properties of water dissociative chemisorption may not change significantly with the size of small copper clusters. Similarities between water dissociation on copper clusters and on copper crystalline surfaces are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...