Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 292: 119552, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932446

RESUMO

AIMS: Heart failure (HF) is a progressive disease with recurrent hospitalizations and high mortality. However, the mechanisms underlying HF remain unclear. The present study aimed to explore the regulatory mechanism of histone deacetylase 3 (HDAC3) and DNA methyltransferase 1 (DNMT1)/Src homology domain 2-containing tyrosine phosphatase-1 (SHP-1) axis in HF. METHODS: The HF rat models and hypertrophy cell models were established. The characteristic parameters of the heart were detected by echocardiography. A multichannel physiological signal acquisition system was used to detect the hemodynamic parameters. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of HDAC3, DNMT1, and SHP-1 mRNAs, while Western blot was applied to analyze the expression of proteins. Masson staining was used to analyze the degree of collagen fiber infiltration. TdT-mediated DUTP nick end labeling (TUNEL) staining was performed to analyze the apoptosis of myocardial tissue cells. Co-immunoprecipitation (co-IP) was conducted to study the interaction between HDAC3 and DNMT1. Flow cytometry was used to analyze the apoptosis. KEY FINDINGS: HDAC3 and DNMT1 were highly expressed in HF rat and hypertrophy cell models. HDAC3 modified DNMT1 through deacetylation to inhibit ubiquitination-mediated degradation, which promoted the expression of DNMT1. DNMT1 inhibited SHP-1 expression via methylation in the promoter region. In summary, HDAC3 modified DNMT1 by deacetylation to suppress SHP-1 expression, which in turn led to the development of cardiomyocyte hypertrophy-induced HF. SIGNIFICANCE: This study provided potential therapeutic targets for HF treatment.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/fisiologia , Insuficiência Cardíaca/metabolismo , Histona Desacetilases/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/fisiologia , Animais , Animais Recém-Nascidos , Metilação de DNA , Masculino , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley
2.
Clin Cosmet Investig Dermatol ; 15: 2925-2932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601462

RESUMO

Purpose: The study aimed to investigate the potential protective role of anthocyanin from Lycium ruthenicum Murr. in the Qaidam Basin against ultraviolet B (UVB)-induced apoptosis of human skin fibroblasts (HSFs). Methods: HSFs cultured in vitro were randomly divided into a control group, UVB group, and anthocyanin groups (0.1, 0.5, and 1.0 mg/mL). HSFs in the UVB and anthocyanin groups were exposed to 30 mJ/cm2 UVB to establish a photoaging model. Then, apoptosis rate, tumor necrosis factor-α (TNF-α), cysteinyl aspartate specific proteinase-3 (caspase-3), cysteinyl aspartate specific proteinase-7 (caspase-7), and survivin expression were evaluated. Results: UVB irradiation can increase the apoptosis rate of HSFs and expression of TNF-α, caspase-7, and survivin. Anthocyanin pretreatment (0.1, 0.5, and 1.0 mg/mL) decreased UVB-induced apoptosis rate and TNF-α and caspase-7 expression and increased survivin expression. Compared with the control group, the apoptosis rate and expression of TNF-α, caspase-7, and survivin of anthocyanin groups in UVB-irradiated HSFs were high. Among the three doses of anthocyanin (0.1, 0.5, and 1.0 mg/mL) groups, the apoptosis rate and TNF-α expression of anthocyanin at 1.0 mg/mL were the lowest. There was no significant change in caspase-3 expression in each group. Conclusion: Anthocyanin from Lycium ruthenicum Murr. in the Qaidam Basin could alleviate UVB-induced apoptosis by regulating the death receptor pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...