Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37688111

RESUMO

Enhancing gasoline detergency is pivotal for enhancing fuel efficiency and mitigating exhaust emissions in gasoline vehicles. This study investigated gasoline vehicle emission characteristics with different gasoline detergency, explored synergistic emission reduction potentials, and developed versatile emission prediction models. The results indicate that improved fuel detergency leads to a reduction of 5.1% in fuel consumption, along with decreases of 3.2% in total CO2, 55.4% in CO, and 15.4% in HC emissions. However, during low-speed driving, CO2 and CO emissions reductions are limited, and HC emissions worsen. A synergistic emission reduction was observed, particularly with CO exhibiting a pronounced reduction compared to HC. The developed deep-learning-based vehicle emission model for different gasoline detergency (DPVEM-DGD) enables accurate emission predictions under various fuel detergency conditions. The Pearson correlation coefficients (Pearson's r) between predicted and measured values of CO2, CO, and HC emissions before and after adding detergency agents are 0.913 and 0.934, 0.895 and 0.915, and 0.931 and 0.969, respectively. The predictive performance improves due to reduced peak emissions resulting from improved fuel detergency. Elevated gasoline detergency not only reduces exhaust emissions but also facilitates more refined emission management to a certain extent.

2.
ACS Omega ; 8(37): 34134-34145, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744810

RESUMO

The detergency of motor gasoline is closely related to vehicle exhaust emissions and fuel economy. This paper proposed an improved method for the rapid detection of gasoline detergency based on the deposit images of test gasoline on aluminum plates produced by a multichannel gasoline detergency simulation test (MGST). The detection algorithm system was structured to recognize the deposit plate images by computer vision based on the convolutional neural networks (CNNs). Compared with the traditional simulation test, the improved MGST method resulted in significant reductions in fuel consumption, cost, and test time. The performance of three transfer learning models (Inception-ResNet-V2, Inception-V3, and ResNet50-V2) and a customized CNN was evaluated in the detection algorithm system, and their detection accuracies reached 94, 94, 88, and 82%. Inception-RsNet-V2 was selected due to its higher accuracy and better robustness. Based on the model interpretation, it is evident that the model undergoes feature extraction from the sediment deposits on the deposit plate. Subsequently, it employed the acquired deposit features to accurately detect gasoline samples that failed to meet detergency standards. This approach was proved to be effective in enhancing the detection process and ensuring reliable results for gasoline detergency evaluation. It is beneficial to environmental protection regulators for managing market gasoline detergency and urban mobile source pollution. In addition, a deposit plate image database should be established to further improve the detection model performance during the environmental regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...