Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Chem Inf Model ; 64(7): 2528-2538, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37864562

RESUMO

Cytochrome P450 (CYP) is a family of enzymes that are responsible for about 75% of all metabolic reactions. Among them, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 participate in the metabolism of most drugs and mediate many adverse drug reactions. Therefore, it is necessary to estimate the chemical inhibition of Cytochrome P450 enzymes in drug discovery and the food industry. In the past few decades, many computational models have been reported, and some provided good performance. However, there are still several issues that should be resolved for these models, such as single isoform, models with unbalanced performance, lack of structural characteristics analysis, and poor availability. In the present study, the deep learning models based on python using the Keras framework and TensorFlow were developed for the chemical inhibition of each CYP isoform. These models were established based on a large data set containing 85715 compounds extracted from the PubChem bioassay database. On external validation, the models provided good AUC values with 0.97, 0.94, 0.94, 0.96, and 0.94 for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, respectively. The models can be freely accessed on the Web server named CYPi-DNNpredictor (cypi.sapredictor.cn), and the codes for the model were made open source in the Supporting Information. In addition, we also analyzed the structural characteristics of chemicals with CYP450 inhibition and detected the structural alerts (SAs), which should be responsible for the inhibition. The SAs were also made available online, named CYPi-SAdetector (cypisa.sapredictor.cn). The models can be used as a powerful tool for the prediction of CYP450 inhibitors, and the SAs should provide useful information for the mechanisms of Cytochrome P450 inhibition.


Assuntos
Citocromo P-450 CYP1A2 , Aprendizado Profundo , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Citocromo P-450 CYP2C9 , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Isoformas de Proteínas , Microssomos Hepáticos/metabolismo
2.
ACS Omega ; 8(35): 31675-31682, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692239

RESUMO

Mitochondria are the energy metabolism center of cells and are involved in a number of other processes, such as cell differentiation and apoptosis, signal transduction, and regulation of cell cycle and cell proliferation. It is of great significance to evaluate the mitochondrial toxicity of drugs and other chemicals. In the present study, we aimed to propose easily available artificial intelligence (AI) models for the prediction of chemical mitochondrial toxicity and investigate the structural characteristics with the analysis of molecular properties and structural alerts. The consensus model achieved good predictive results with high total accuracy at 87.21% for validation sets. The models can be accessed freely via https://ochem.eu/article/158582. Besides, several commonly used chemical properties were significantly different between chemicals with and without mitochondrial toxicity. We also detected the structural alerts (SAs) responsible for mitochondrial toxicity and integrated them into the web-server SApredictor (www.sapredictor.cn). The study may provide useful tools for in silico estimation of mitochondrial toxicity and be helpful to understand the mechanisms of mitochondrial toxicity.

3.
Ecotoxicol Environ Saf ; 263: 115251, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451095

RESUMO

Endocrine-disrupting chemicals (EDCs) can cause serious harm to human health and the environment; therefore, it is important to rapidly and correctly identify EDCs. Different computational models have been proposed for the prediction of EDCs over the past few decades, but the reported models are not always easily available, and few studies have investigated the structural characteristics of EDCs. In the present study, we have developed a series of artificial intelligence models targeting EDC receptors: the androgen receptor (AR); estrogen receptor (ER); and pregnane X receptor (PXR). The consensus models achieved good predictive results for validation sets with balanced accuracy values of 87.37%, 90.13%, and 79.21% for AR, ER, and PXR binding assays, respectively. Analysis of the physical-chemical properties suggested that several chemical properties were significantly (p < 0.05) different between EDCs and non-EDCs. We also identified structural alerts that can indicate an EDC, which were integrated into the web server SApredictor. These models and structural characteristics can provide useful tools and information in the discrimination and mechanistic understanding of EDCs in drug discovery and environmental risk assessment.


Assuntos
Inteligência Artificial , Disruptores Endócrinos , Humanos , Disruptores Endócrinos/análise , Receptores de Estrogênio/metabolismo , Medição de Risco
4.
Front Pharmacol ; 14: 1170987, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361226

RESUMO

Objective: Acute kidney injury (AKI) is a common adverse reaction observed with the clinical use of cefoperazone-sulbactam sodium and mezlocillin-sulbactam sodium. Based upon real-world data, we will herein determine the risk factors associated with AKI in inpatients after receipt of these antimicrobial drugs, and we will develop predictive models to assess the risk of AKI. Methods: Data from all adult inpatients who used cefoperazone-sulbactam sodium and mezlocillin-sulbactam sodium at the First Affiliated Hospital of Shandong First Medical University between January 2018 and December 2020 were analyzed retrospectively. The data were collected through the inpatient electronic medical record (EMR) system and included general information, clinical diagnosis, and underlying diseases, and logistic regression was exploited to develop predictive models for the risk of AKI. The training of the model strictly adopted 10-fold cross-validation to validate its accuracy, and model performance was evaluated employing receiver operating characteristic (ROC) curves and the areas under the curve (AUCs). Results: This retrospective study comprised a total of 8767 patients using cefoperazone-sulbactam sodium, of whom 1116 developed AKI after using the drug, for an incidence of 12.73%. A total of 2887 individuals used mezlocillin-sulbactam sodium, of whom 265 developed AKI after receiving the drug, for an incidence of 9.18%. In the cohort administered cefoperazone-sulbactam sodium, 20 predictive factors (p < 0.05) were applied in constructing our logistic predictive model, and the AUC of the predictive model was 0.83 (95% CI, 0.82-0.84). In the cohort comprising mezlocillin-sulbactam sodium use, nine predictive factors were determined by multivariate analysis (p < 0.05), and the AUC of the predictive model was 0.74 (95% CI, 0.71-0.77). Conclusion: The incidence of AKI induced by cefoperazone-sulbactam sodium and mezlocillin-sulbactam sodium in hospitalized patients may be related to the combined treatment of multiple nephrotoxic drugs and a past history of chronic kidney disease. The AKI-predictive model based on logistic regression showed favorable performance in predicting the AKI of adult in patients who received cefoperazone-sulbactam sodium or mezlocillin-sulbactam sodium.

5.
Front Pharmacol ; 14: 1129948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007006

RESUMO

Background: Proton pump inhibitors (PPI) are generally considered to be one of the well-established prescription drug classes and are commonly used to treat most acid-related diseases. However, a growing body of literature showing an association between gastric and colorectal cancer risk and PPI use continues to raise concerns about the safety of PPI use. Therefore, we aimed to investigate the association between proton pump inhibitor use and risk of gastric and colorectal cancer. Methods: We collected relevant articles using PubMed, Embase, Web of Science and Cochrane library from 1 January 1990 to 21 March 2022. The pooled effect sizes were calculated based on the random-effects model. The study was registered with PROSPERO (CRD42022351332). Results: A total of 24 studies (n = 8,066,349) were included in the final analysis in the screening articles. Compared with non-PPI users, PPI users had a significantly higher risk of gastric cancer (RR = 1.82, 95% CI: 1.46-2.29), but not colorectal cancer (RR = 1.22, 95% CI: 0.95-1.55). Subgroup analysis showed that there was a significant positive correlation between the use of PPI and the risk of non-cardiac cancer (RR = 2.75, 95% CI: 2.09-3.62). There was a significant trend between the duration dependent effect of PPI use and the risk of gastric cancer (<1 year RR = 1.56, 95% CI: 1.30-1.86; 1-3 years RR = 1.75, 95% CI: 1.28-2.37; >3 years RR = 2.32, 95% CI: 1.15-4.66), but not colorectal cancer (≤1 year RR = 1.00, 95% CI: 0.78-1.28; >1 year RR = 1.18, 95% CI: 0.91-1.54; ≥5 years RR = 1.06, 95% CI: 0.95-1.17). Conclusion: We found that PPI use increased gastric cancer risk, but not colorectal cancer risk. This result may be biased due to confounding factors. More prospective studies are needed to further validate and support our findings. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022351332], identifier [CRD42022351332].

6.
Front Immunol ; 13: 1015409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353637

RESUMO

The incidence and complexity of drug-induced autoimmune diseases (DIAD) have been on the rise in recent years, which may lead to serious or fatal consequences. Besides, many environmental and industrial chemicals can also cause DIAD. However, there are few effective approaches to estimate the DIAD potential of drugs and other chemicals currently, and the structural characteristics and mechanism of action of DIAD compounds have not been clarified. In this study, we developed the in silico models for chemical DIAD prediction and investigated the structural characteristics of DIAD chemicals based on the reliable drug data on human autoimmune diseases. We collected 148 medications which were reported can cause DIAD clinically and 450 medications that clearly do not cause DIAD. Several different machine learning algorithms and molecular fingerprints were combined to develop the in silico models. The best performed model provided the good overall accuracy on validation set with 76.26%. The model was made freely available on the website http://diad.sapredictor.cn/. To further investigate the differences in structural characteristics between DIAD chemicals and non-DIAD chemicals, several key physicochemical properties were analyzed. The results showed that AlogP, molecular polar surface area (MPSA), and the number of hydrogen bond donors (nHDon) were significantly different between the DIAD and non-DIAD structures. They may be related to the DIAD toxicity of chemicals. In addition, 14 structural alerts (SA) for DIAD toxicity were detected from predefined substructures. The SAs may be helpful to explain the mechanism of action of drug induced autoimmune disease, and can used to identify the chemicals with potential DIAD toxicity. The structural alerts have been integrated in a structural alert-based web server SApredictor (http://www.sapredictor.cn). We hope the results could provide useful information for the recognition of DIAD chemicals and the insights of structural characteristics for chemical DIAD toxicity.


Assuntos
Doenças Autoimunes , Aprendizado de Máquina , Humanos , Simulação por Computador , Algoritmos
7.
J Chem Inf Model ; 62(23): 6035-6045, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36448818

RESUMO

Neurotoxicity can be resulted from many diverse clinical drugs, which has been a cause of concern to human populations across the world. The detection of drug-induced neurotoxicity (DINeurot) potential with biological experimental methods always required a lot of budget and time. In addition, few studies have addressed the structural characteristics of neurotoxic chemicals. In this study, we focused on the computational modeling for drug-induced neurotoxicity with machine learning methods and the insights into the structural characteristics of neurotoxic chemicals. Based on the clinical drug data with neurotoxicity effects, we developed 35 different classifiers by combining five different machine learning methods and seven fingerprint packages. The best-performing model achieved good results on both 5-fold cross-validation (balanced accuracy of 76.51%, AUC value of 0.83, and MCC value of 0.52) and external validation (balanced accuracy of 83.63%, AUC value of 0.87, and MCC value of 0.67). The model can be freely accessed on the web server DINeuroTpredictor (http://dineurot.sapredictor.cn/). We also analyzed the distribution of several key molecular properties between neurotoxic and non-neurotoxic structures. The results indicated that several physicochemical properties were significantly different between the neurotoxic and non-neurotoxic compounds, including molecular polar surface area (MPSA), AlogP, the number of hydrogen bond acceptors (nHAcc) and donors (nHDon), the number of rotatable bonds (nRotB), and the number of aromatic rings (nAR). In addition, 18 structural alerts responsible for chemical neurotoxicity were identified. The structural alerts have been integrated with our web server SApredictor (http://www.sapredictor.cn). The results of this study could provide useful information for the understanding of the structural characteristics and computational prediction for chemical neurotoxicity.


Assuntos
Aprendizado de Máquina , Humanos , Simulação por Computador
8.
Front Pharmacol ; 13: 924173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935825

RESUMO

Diuretics have been one of the well-known nephrotoxic drugs which can lead to acute kidney injury (AKI). However, there are few real-world studies on the incidence of AKI in hospitalized patients received diuretics. In the present study, a single-center retrospective study was conducted in our center. The clinical data of hospitalized patients received diuretics from January 2018 to December 2020 was retrospectively analyzed. Among the 18,148 hospitalized patients included in the study, 2,589 patients (14.26%) were judged as incidence with AKI, while only 252 patients were diagnosed with AKI in the medical record. Among diuretics drugs in the study, the incidence rate of AKI with torasemide was the highest with 21.62%, and hydrochlorothiazide had the lowest incidence rate (6.80%). The multiple logistic regression analysis suggested that complicated with hypertension, anemia, pneumonia, shock, sepsis, heart failure, neoplastic diseases, combined use of proton pump inhibitors (PPI) were independent risk factors for AKI related to diuretics. The logic regression models for diuretics related AKI were developed based on the included data. The model for diuretics-AKI achieved the area under the receiver operating characteristic curves (AUC) with 0.79 on 10-fold cross validation. It is urgent to improve the understanding and attention of AKI in patients received diuretics for medical workers, and the assessment of risk factors before the use of diuretics should be contributed to the early prevention, diagnosis and treatment of AKI, and ultimately reducing morbidity and improving prognosis.

9.
Front Chem ; 10: 916614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910729

RESUMO

The rapid and accurate evaluation of chemical toxicity is of great significance for estimation of chemical safety. In the past decades, a great number of excellent computational models have been developed for chemical toxicity prediction. But most machine learning models tend to be "black box", which bring about poor interpretability. In the present study, we focused on the identification and collection of structural alerts (SAs) responsible for a series of important toxicity endpoints. Then, we carried out effective storage of these structural alerts and developed a web-server named SApredictor (www.sapredictor.cn) for screening chemicals against structural alerts. People can quickly estimate the toxicity of chemicals with SApredictor, and the specific key substructures which cause the chemical toxicity will be intuitively displayed to provide valuable information for the structural optimization by medicinal chemists.

10.
Ecotoxicol Environ Saf ; 242: 113940, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35999760

RESUMO

It has become a top global regulatory priority to prevent and control pollution from the release of synthetic chemicals, which continues to affect the aquatic communities. In the past decades, computational tools were largely used to significantly reduce the budget and time cost of chemical acute aquatic toxicity assessment. But the structural basis of toxic compounds was rarely analyzed. In the present study, we collected 1438, 485 and 961 chemicals with acute toxicity data records for three representative aquatic species, including Tetrahymena pyriformis, Daphnia magna, and Fathead minnow, respectively. A series of artificial intelligence models were developed using OCHEM tools. For each aquatic toxicity endpoint, a consensus model was developed based on the top performed individual models. The consensus models provided good performance on external validation sets with total accuracy values 96.88 %, 90.63 %, and 84.90 % for Tetrahymena pyriformis toxicity (TPT), Daphnia magna toxicity (DMT), and Fathead minnow toxicity (FMT), respectively. The models can be freely accessed via https://ochem.eu/article/146910. Moreover, the analysis of physical-chemical properties suggested that several key molecular properties of aquatic toxic compounds were significantly different with those of non-toxic compounds. Thus, these descriptors may be associated to chemical acute aquatic toxicity, and may be useful for the understand of chemical aquatic toxicity. Besides, in this study, the structural alerts for aquatic toxicity were detected using f-score and frequency ratio analysis of predefined substructures. A total of 112, 58 and 33 structural alerts were identified responsible for TPT, DMT, and FMT, respectively. These structural alerts could provide useful information for the mechanisms of chemical aquatic toxicity and visual alerts for environmental assessment. All the structural alerts were integrated in the web-server SApredictor (www.sapredictor.cn).


Assuntos
Cyprinidae , Tetrahymena pyriformis , Poluentes Químicos da Água , Animais , Inteligência Artificial , Daphnia , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água/toxicidade
11.
Front Pharmacol ; 12: 793332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082675

RESUMO

Drug induced nephrotoxicity is a major clinical challenge, and it is always associated with higher costs for the pharmaceutical industry and due to detection during the late stages of drug development. It is desirable for improving the health outcomes for patients to distinguish nephrotoxic structures at an early stage of drug development. In this study, we focused on in silico prediction and insights into the structural basis of drug induced nephrotoxicity, based on reliable data on human nephrotoxicity. We collected 565 diverse chemical structures, including 287 nephrotoxic drugs on humans in the real world, and 278 non-nephrotoxic approved drugs. Several different machine learning and deep learning algorithms were employed for in silico model building. Then, a consensus model was developed based on three best individual models (RFR_QNPR, XGBOOST_QNPR, and CNF). The consensus model performed much better than individual models on internal validation and it achieved prediction accuracy of 86.24% external validation. The results of analysis of molecular properties differences between nephrotoxic and non-nephrotoxic structures indicated that several key molecular properties differ significantly, including molecular weight (MW), molecular polar surface area (MPSA), AlogP, number of hydrogen bond acceptors (nHBA), molecular solubility (LogS), the number of rotatable bonds (nRotB), and the number of aromatic rings (nAR). These molecular properties may be able to play an important part in the identification of nephrotoxic chemicals. Finally, 87 structural alerts for chemical nephrotoxicity were mined with f-score and positive rate analysis of substructures from Klekota-Roth fingerprint (KRFP). These structural alerts can well identify nephrotoxic drug structures in the data set. The in silico models and the structural alerts could be freely accessed via https://ochem.eu/article/140251 and http://www.sapredictor.cn, respectively. We hope the results should provide useful tools for early nephrotoxicity estimation in drug development.

12.
Sensors (Basel) ; 20(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784732

RESUMO

Determining the potential risks of musculoskeletal disorders through working postures in a workplace is expensive and time-consuming. A novel intelligent rapid entire body assessment (REBA) system based on convolutional pose machines (CPM), entitled the Quick Capture system, was applied to determine the risk levels. The aim of the study was to validate the feasibility and reliability of the CPM-based REBA system through a simulation experiment. The reliability was calculated from the differences of motion angles between the CPM-based REBA and a motion capture system. Results show the data collected by the Quick Capture system were consistent with those of the motion capture system; the average of root mean squared error (RMSE) was 4.77 and the average of Spearman's rho (ρ) correlation coefficient in the different 12 postures was 0.915. For feasibility evaluation, the linear weighted Cohen's kappa between the REBA score obtained by the Quick Capture system and those from the three experts were used. The result shows good agreement, with an average proportion agreement index (P0) of 0.952 and kappa of 0.738. The Quick Capture system does not only accurately analyze working posture, but also accurately determines risk level of musculoskeletal disorders. This study suggested that the Quick Capture system could be applied for a rapid and real-time on-site assessment.


Assuntos
Doenças Musculoesqueléticas , Doenças Profissionais , Postura , Ergonomia , Humanos , Doenças Musculoesqueléticas/diagnóstico , Reprodutibilidade dos Testes , Local de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...