Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Phys Med Biol ; 68(17)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37506710

RESUMO

Objective. Photon counting CT (PCCT) has been a research focus in the last two decades. Recent studies and advancements have demonstrated that systems using semiconductor-based photon counting detectors (PCDs) have the potential to provide better contrast, noise and spatial resolution performance compared to conventional scintillator-based systems. With multi-energy threshold detection, PCD can simultaneously provide the photon energy measurement and enable material decomposition for spectral imaging. In this work, we report a performance evaluation of our first CdZnTe-based prototype full-size PCCT system through various phantom imaging studies.Approach.This prototype system supports a 500 mm scan field-of-view and 10 mmz-coverage at isocenter. Phantom scans were acquired using 120 kVp from 50 to 400 mAs to assess the imaging performance on: CT number accuracy, uniformity, noise, spatial resolution, material differentiation and quantification.Main results.Both qualitative and quantitative evaluations show that PCCT, under the tested conditions, has superior imaging performance with lower noise and improved spatial resolution compared to conventional energy integrating detector (EID)-CT. Using projection domain material decomposition approach with multiple energy bin measurements, PCCT virtual monoenergetic images have lower noise, and good accuracy in quantifying iodine and calcium concentrations. These results lead to increased contrast-to-noise ratio (CNR) for both high and low contrast study objects compared to EID-CT at matched dose and spatial resolution. PCCT can also generate super-high resolution images using much smaller detector pixel size than EID-CT and greatly improve image spatial resolution.Significance.Improved spatial resolution and quantification accuracy with reduced image noise of the PCCT images can potentially lead to better diagnosis at reduced radiation dose compared to conventional EID-CT. Increased CNR achieved by PCCT suggests potential reduction in iodine contrast media load, resulting in better patient safety and reduced cost.


Assuntos
Iodo , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Fótons
3.
Artigo em Inglês | MEDLINE | ID: mdl-38188182

RESUMO

Low-contrast lesions are difficult to detect in noisy low-dose CT images. Improving CT image quality for this detection task has the potential to improve diagnostic accuracy and patient outcomes. In this work, we use tunable neural networks for CT image restoration with a hyperparameter to control the variance/bias tradeoff. We use clinical images from a super-high-resolution normal-dose CT scan to synthesize low-contrast low-dose CT images for supervised training of deep learning CT reconstruction models. Those models are trained using with multiple noise realizations so that variance and bias can be penalized separately. We use a training loss function with one hyperparameter called the denoising level, which controls the variance/bias tradeoff. Finally, we evaluate the CT image quality to find the optimal denoising level for low-contrast lesion detectability. We evaluate performance using a shallow neural network model classification model to represent a suboptimal image observer. Our results indicate that the optimal networks for low-contrast lesion detectability are those that prioritize bias reduction rather than mean-squared error, which demonstrates the potential clinical benefit of our proposed tunable neural networks.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36329993

RESUMO

Quantitative estimation of multi-material density images is an important goal for Spectral CT imaging. However, material decomposition is a poorly-conditioned nonlinear inverse problem. Maximum-likelihood model-based material decomposition results in very noisy material density image estimates. One increasingly popular strategy for noise reduction is to apply deep neural networks for multi-material image formation. The most common loss function is mean squared error with respect to supervised target images such as ground truth or higher-dose cases. However, we believe that the mean-squared error loss function has several issues for multi-material image formation. In this work, we present a new loss function which includes multiple noise realizations with separate weights on covariance and bias for joint denoising of all material bases. By modulating these weights, it is possible to tune the image quality of neural network output images. To demonstrate our proposed approach, we conducted a simulation of a water/calcium/gadolinium spectral CT imaging scenario using a deep neural network for multi-material image denoising. Our results show that by changing the weights of our proposed loss function, it is possible to control the tradeoff between variance and bias for individual materials as well as the control over the bias coupling between materials.

5.
Int J Comput Assist Radiol Surg ; 14(12): 2187-2198, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31512193

RESUMO

PURPOSE: Given the ability of positron emission tomography (PET) imaging to localize malignancies in heterogeneous tumors and tumors that lack an X-ray computed tomography (CT) correlate, combined PET/CT-guided biopsy may improve the diagnostic yield of biopsies. However, PET and CT images are naturally susceptible to problems due to respiratory motion, leading to imprecise tumor localization and shape distortion. To facilitate PET/CT-guided needle biopsy, we developed and investigated the feasibility of a workflow that allows to bring PET image guidance into interventional CT suite while accounting for respiratory motion. METHODS: The performance of PET/CT respiratory motion correction using registered and summed phases method was evaluated through computer simulations using the mathematical 4D extended cardiac-torso phantom, with motion simulated from real respiratory traces. The performance of PET/CT-guided biopsy procedure was evaluated through operation on a physical anthropomorphic phantom. Vials containing radiolabeled 18F-fluorodeoxyglucose were placed within the physical phantom thorax as biopsy targets. We measured the average distance between target center and the simulated biopsy location among multiple trials to evaluate the biopsy localization accuracy. RESULTS: The computer simulation results showed that the RASP method generated PET images with a significantly reduced noise of 0.10 ± 0.01 standardized uptake value (SUV) as compared to an end-of-expiration image noise of 0.34 ± 0.04 SUV. The respiratory motion increased the apparent liver lesion size from 5.4 ± 1.1 to 35.3 ± 3.0 cc. The RASP algorithm reduced this to 15.7 ± 3.7 cc. The distances between the centroids for the static image lesion and two moving lesions in the liver and lung, when reconstructed with the RASP algorithm, were 0.83 ± 0.72 mm and 0.42 ± 0.72 mm. For the ungated imaging, these values increased to 3.48 ± 1.45 mm and 2.5 ± 0.12 mm, respectively. For the ungated imaging, this increased to 1.99 ± 1.72 mm. In addition, the lesion activity estimation (e.g., SUV) was accurate and constant for images reconstructed using the RASP algorithm, whereas large activity bias and variations (± 50%) were observed for lesions in the ungated images. The physical phantom studies demonstrated a biopsy needle localization error of 2.9 ± 0.9 mm from CT. Combined with the localization errors due to respiration for the PET images from simulations, the overall estimated lesion localization error would be 3.08 mm for PET-guided biopsies images using RASP and 3.64 mm when using ungated PET images. In other words, RASP reduced the localization error by approximately 0.6 mm. The combined error analysis showed that replacing the standard end-of-expiration images with the proposed RASP method in PET/CT-guided biopsy workflow yields comparable lesion localization accuracy and reduced image noise. CONCLUSION: The RASP method can produce PET images with reduced noise, attenuation artifacts and respiratory motion, resulting in more accurate lesion localization. Testing the PET/CT-guided biopsy workflow using computer simulation and physical phantoms with respiratory motion, we demonstrated that guided biopsy procedure with the RASP method can benefit from improved PET image quality due to noise reduction, without compromising the accuracy of lesion localization.


Assuntos
Simulação por Computador , Biópsia Guiada por Imagem/métodos , Fígado/patologia , Pulmão/patologia , Movimentos dos Órgãos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Mecânica Respiratória , Algoritmos , Artefatos , Humanos , Fígado/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imagens de Fantasmas
6.
IEEE Trans Med Imaging ; 36(1): 277-287, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27623572

RESUMO

An increasing number of X-ray CT procedures are being conducted with drastically reduced dosage, due at least in part to advances in statistical reconstruction methods that can deal more effectively with noise than can traditional techniques. As data become photon-limited, more detailed models are necessary to deal with count rates that drop to the levels of system electronic noise. We present two options for sinogram pre-treatment that can improve the performance of photon-starved measurements, with the intent of following with model-based image reconstruction. Both the local linear minimum mean-squared error (LLMMSE) filter and pointwise Bayesian restoration (PBR) show promise in extracting useful, quantitative information from very low-count data by reducing local bias while maintaining the lower noise variance of statistical methods. Results from clinical data demonstrate the potential of both techniques.


Assuntos
Tomografia Computadorizada por Raios X , Teorema de Bayes , Fluoroscopia , Humanos , Fótons , Doses de Radiação
7.
IEEE Trans Med Imaging ; 33(1): 117-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24058024

RESUMO

Dual-energy X-ray CT (DECT) has the potential to improve contrast and reduce artifacts as compared to traditional CT. Moreover, by applying model-based iterative reconstruction (MBIR) to dual-energy data, one might also expect to reduce noise and improve resolution. However, the direct implementation of dual-energy MBIR requires the use of a nonlinear forward model, which increases both complexity and computation. Alternatively, simplified forward models have been used which treat the material-decomposed channels separately, but these approaches do not fully account for the statistical dependencies in the channels. In this paper, we present a method for joint dual-energy MBIR (JDE-MBIR), which simplifies the forward model while still accounting for the complete statistical dependency in the material-decomposed sinogram components. The JDE-MBIR approach works by using a quadratic approximation to the polychromatic log-likelihood and a simple but exact nonnegativity constraint in the image domain. We demonstrate that our method is particularly effective when the DECT system uses fast kVp switching, since in this case the model accounts for the inaccuracy of interpolated sinogram entries. Both phantom and clinical results show that the proposed model produces images that compare favorably in quality to previous decomposition-based methods, including FBP and other statistical iterative approaches.


Assuntos
Algoritmos , Interpretação Estatística de Dados , Modelos Estatísticos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Humanos , Funções Verossimilhança , Imagens de Fantasmas , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/instrumentação , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/estatística & dados numéricos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...