Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(18): 20749-20761, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35481368

RESUMO

The development of robust phototherapeutic strategies for eradicating tumors remains a significant challenge in the transfer of cancer phototherapy to clinical practice. Here, a phototherapeutic nanococktail atovaquone/17-dimethylaminoethylamino-17-demethoxygeldanamycin/glyco-BODIPY (ADB) was developed to enhance photodynamic therapy (PDT) and photothermal therapy (PTT) via alleviation of hypoxia and thermal resistance that was constructed using supramolecular self-assembly of glyco-BODIPY (BODIPY-SS-LAC, BSL-1), hypoxia reliever atovaquone (ATO), and heat shock protein inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG). Benefiting from a glyco-targeting and glutathione (GSH) responsive units BSL-1, ADB can be rapidly taken up by hepatoma cells, furthermore the loaded ATO and 17-DMAG can be released in original form into the cytoplasm. Using in vitro and in vivo results, it was confirmed that ADB enhanced the synergetic PDT and PTT upon irradiation using 685 nm near-infrared light (NIR) under a hypoxic tumor microenvironment where ATO can reduce O2 consumption and 17-DMAG can down-regulate HSP90. Moreover, ADB exhibited good biosafety, and tumor eradication in vivo. Hence, this as-developed phototherapeutic nanococktail overcomes the substantial obstacles encountered by phototherapy in tumor treatment and offers a promising approach for the eradication of tumors.


Assuntos
Nanopartículas , Fotoquimioterapia , Atovaquona , Linhagem Celular Tumoral , Humanos , Hipóxia/tratamento farmacológico , Nanopartículas/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia
2.
J Nanobiotechnology ; 19(1): 446, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949198

RESUMO

The integrin αvß3 receptor and Lactoferrin receptor (LfR) are over-expressed in both cerebral microvascular endothelial cells and glioma cells. RGD tripeptide and Lf can specifically bind with integrin αvß3 receptor and LfR, respectively. In our study, RGD and Lf dual-modified liposomes loaded with docetaxel (DTX) were designed to enhance the brain targeting effect and treatment of glioma. Our in vitro studies have shown that RGD-Lf-LP can significantly enhance the cellular uptake of U87 MG cells and human cerebral microvascular endothelial cells (hCMEC/D3) when compared to RGD modified liposomes (RGD-LP) and Lf modified liposomes (Lf-LP). Free RGD and Lf competitively reduced the cellular uptake of RGD-Lf-LP, in particular, free RGD played a main inhibitory effect on cellular uptake of RGD-Lf-LP in U87 MG cells, yet free Lf played a main inhibitory effect on cellular uptake of RGD-Lf-LP in hCMEC/D3 cells. RGD-Lf-LP can also significantly increase penetration of U87 MG tumor spheroids, and RGD modification plays a dominating role on promoting the penetration of U87 MG tumor spheroids. The results of in vitro BBB model were shown that RGD-Lf-LP-C6 obviously increased the transport of hCMEC/D3 cell monolayers, and Lf modification plays a dominating role on increasing the transport of hCMEC/D3 cell monolayers. In vivo imaging proved that RGD-Lf-LP shows stronger targeting effects for brain orthotopic gliomas than that of RGD-LP and Lf-LP. The result of tissue distribution confirmed that RGD-LF-LP-DTX could significantly increase brain targeting after intravenous injection. Furthermore, RGD-LF-LP-DTX (a dose of 5 mg kg-1 DTX) could significantly prolong the survival time of orthotopic glioma-bearing mice. In summary, RGD and LF dual modification are good combination for brain targeting delivery, RGD-Lf-LP-DTX could enhance brain targeting effects, and is thus a promising chemotherapeutic drug delivery system for treatment of glioma.


Assuntos
Antineoplásicos/farmacologia , Docetaxel/química , Integrina alfaVbeta3/antagonistas & inibidores , Lipossomos/química , Receptores de Superfície Celular/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/metabolismo , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Integrina alfaVbeta3/metabolismo , Lipossomos/farmacocinética , Camundongos , Camundongos Nus , Oligopeptídeos/química , Tamanho da Partícula , Receptores de Superfície Celular/metabolismo , Taxa de Sobrevida , Distribuição Tecidual
3.
Theranostics ; 10(10): 4308-4322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292496

RESUMO

Rationale: The dual-targeted drug delivery system was designed for enhancing permeation of the blood-brain barrier (BBB) and providing an anti-glioma effect. As transferrin receptor (TfR) is over-expressed by the brain capillary endothelial (hCMEC/D3) and glioma cells, a mouse monoclonal antibody, RI7217, with high affinity and selectivity for TfR, was used to study the brain targeted drug delivery system. Muscone, an ingredient of traditional Chinese medicine (TCM) musk, was used as the "guide" drug to probe the permeability of the BBB for drug delivery into the cerebrospinal fluid. This study investigated the combined effects of TCM aromatic resuscitation and modern receptor-targeted technology by the use of muscone/RI7217 co-modified docetaxel (DTX) liposomes for enhanced drug delivery to the brain for anti-glioma effect. Methods: Cellular drug uptake from the formulations was determined using fluorescence microscopy and flow cytometry. The drug penetrating ability into tumor spheroids were visualized using confocal laser scanning microscopy (CLSM). In vivo glioma-targeting ability of formulations was evaluated using whole-body fluorescent imaging system. The survival curve study was performed to evaluate the anti-glioma effect of the formulations. Results: The results showed that muscone and RI7217 co-modified DTX liposomes enhanced uptake into both hCMEC/D3 and U87-MG cells, increased penetration to the deep region of U87-MG tumor spheroids, improved brain targeting in vivo and prolonged survival time of nude mice bearing tumor. Conclusion: Muscone and RI7217 co-modified DTX liposomes were found to show improved brain targeting and enhanced the efficacy of anti-glioma drug treatment in vivo.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Cicloparafinas/farmacologia , Glioma/tratamento farmacológico , Lipossomos/farmacocinética , Animais , Antígenos CD/química , Antígenos CD/farmacologia , Barreira Hematoencefálica/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cicloparafinas/administração & dosagem , Cicloparafinas/líquido cefalorraquidiano , Docetaxel/farmacologia , Sistemas de Liberação de Medicamentos , Quimioterapia Combinada/métodos , Glioma/metabolismo , Lipossomos/química , Medicina Tradicional Chinesa/efeitos adversos , Medicina Tradicional Chinesa/métodos , Camundongos , Camundongos Nus , Permeabilidade/efeitos dos fármacos , Receptores da Transferrina/química , Receptores da Transferrina/metabolismo , Moduladores de Tubulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA