Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 413: 125380, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609880

RESUMO

Distinguishing toxic gases among the various volatile sulfur compounds (VSCs) is of significant practical value for atmospheric and environmental pollution monitoring, industrial monitoring, and even for medical diagnostics (where VSCs are indicators of diseases). The particular challenge lies in the detection and discrimination of sulfur-containing gases such as dimethyl disulfide (DMDS), methyl sulfide (DMS), hydrogen sulfide (H2S), and carbon disulfide (CS2) is of value. Herein, single-phase perovskite-type LnFeO3 nanoparticles were prepared by the citrate sol-gel method. Their gas sensing characteristics regard to the four typical VSCs were investigated. We found that the gas response of the p-type semiconductor LnFeO3 gas sensors to the four typical VSCs are significantly different. In addition, the sensors offer high performance, good tolerance to environmental changes and long-term stability for detecting VSCs gas at an operating temperature of 210 °C. A new design of sensor array was realized by integrating a series of LnFeO3 materials, which revealed excellent recognition ability for various VSCs, showing promise for real time monitoring.

2.
Dalton Trans ; 50(3): 970-978, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33350996

RESUMO

In this paper, KIT-6 is used as a template to prepare ordered mesoporous materials WO3 and Au-loaded WO3 (Au-WO3). The pristine WO3 sensor and the Au-WO3 sensor are fabricated for the detection of 19 important gases, such as trimethylamine, formaldehyde and CS2. The results show that the Au-WO3 sensor has better selectivity and higher response to TMA. At a working temperature of 268 °C, the response (Ra/Rg) of the Au-WO3 sensor to 100 ppm of TMA is 41.56 and the response time is 1 s. In addition, the sensor has excellent response/recovery capabilities and stability. These high sensing performances are mainly attributed to the electronic and chemical sensitization of the noble metal Au and the presence of a high specific surface area supported by the mesoporous structure. Therefore, Au-doped mesoporous WO3 should be a promising material for a high performance TMA gas sensor.

3.
Angew Chem Int Ed Engl ; 60(12): 6561-6566, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33354797

RESUMO

Semiconducting metal oxides (SMOXs) are used widely for gas sensors. However, the effect of ambient humidity on the baseline and sensitivity of the chemiresistors is still a largely unsolved problem, reducing sensor accuracy and causing complications for sensor calibrations. Presented here is a general strategy to overcome water-sensitivity issues by coating SMOXs with a hydrophobic polymer separated by a metal-organic framework (MOF) layer that preserves the SMOX surface and serves a gas-selective function. Sensor devices using these nanoparticles display near-constant responses even when humidity is varied across a wide range [0-90 % relative humidity (RH)]. Furthermore, the sensor delivers notable performance below 20 % RH whereas other water-resistance strategies typically fail. Selectivity enhancement and humidity-independent sensitivity are concomitantly achieved using this approach. The reported tandem coating strategy is expected to be relevant for a wide range of SMOXs, leading to a new generation of gas sensors with excellent humidity-resistant performance.

4.
Nanotechnology ; 31(11): 115502, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31778981

RESUMO

Surface modification is a simple and effective means to promote the sensing performance of metal oxide semiconductor-based gas sensors. Marigold-shaped ZnO nanoflowers are fabricated via a simple precipitation reaction and subsequently catalytically modified with RuO2 on the surface through an ethylene glycol solvothermal treatment. The experimental results have proven that a very low content of Ru on the surface of ZnO exists in an oxidized state. However, the gas response of the sensor based on RuO2-modified ZnO is remarkably improved by 17 times to 100 ppm acetone with the decrease of optimal operating temperature from 219 °C-172 °C and reduction in recovery time from 79-52 s. The sensing enhancement mechanism of surface modification can be attributed to the formation of massive small heterostructure between p-type RuO2 ultrasmall nanoparticles and n-type ZnO as well as the catalytic effect of Ru4+ and a rougher surface.

5.
Mikrochim Acta ; 186(4): 222, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30847573

RESUMO

Hierarchical Co3O4@NiMoO4 core-shell nanowires (NWs) were synthesized utilizing a two-step hydrothermal method. The NWs show a high chemiresistive response (at a temperature of 255 °C) to xylene, with an Rgas/Rair ratio of 24.6 at 100 ppm xylene, while the response towards toluene, benzene, ethanol, and acetone, CO, H2S and NO2 is much weaker. In contrast, pure Co3O4 nanowires exhibit weak responses to all the vapors/gases and poor selectivity. The new NW sensor displays an almost linear response (1-100 ppm) to xylene and a lower detection limit of 424 ppb. The remarkable gas sensing characteristics are attributed to the synergistic catalytic effect and the formation of a heterostructure between Co3O4 and NiMoO4. Graphical abstract Schematic presentation of a xylene vapor chemiresistive sensor based on Co3O4@NiMoO4 core-shell nanowires. The Co3O4@NiMoO4 core-shell nanowires-based sensor exhibits a high response (24.6) to 100 ppm xylene at 255 °C and high response/recovery speed (13-15 and 25-29 s).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...