Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 32(12): e4826, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906538

RESUMO

The nucleocapsid (N) protein is an essential structural component necessary for genomic packaging and replication in various human coronaviruses (HCoVs), such as SARS-CoV-2 and MERS-CoV. Recent studies have revealed that the SARS-CoV-2 N protein exhibits a high capacity for liquid-liquid phase separation (LLPS), which plays multiple roles in viral infection and replication. In this study, we systematically investigate the LLPS capabilities of seven homologous N proteins from different HCoVs using a high-throughput protein phase separation assay. We found that LLPS is a shared intrinsic property among these N proteins. However, the phase separation profiles of the various N protein homologs differ, and they undergo phase separation under distinct in vitro conditions. Moreover, we demonstrate that N protein homologs can co-phase separate with FUS, a SG-containing protein, and accelerate its liquid-to-solid phase transition and amyloid aggregation, which is closely related to amyotrophic lateral sclerosis. Further study shows that N protein homologs can directly bind to the low complexity domain of FUS. Together, our work demonstrates that N proteins of different HCoVs possess phase separation capabilities, which may contribute to promoting pathological aggregation of host proteins and disrupting SG homeostasis during the infection and replication of various HCoVs.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas do Nucleocapsídeo , Humanos , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteína FUS de Ligação a RNA/química
2.
Nat Chem Biol ; 19(10): 1235-1245, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37400537

RESUMO

Amyloid fibril is an important pharmaceutical target for diagnostic and therapeutic treatment of neurodegenerative diseases. However, rational design of chemical compounds that interact with amyloid fibrils is unachievable due to the lack of mechanistic understanding of the ligand-fibril interaction. Here we used cryoelectron microscopy to survey the amyloid fibril-binding mechanism of a series of compounds including classic dyes, (pre)clinical imaging tracers and newly identified binders from high-throughput screening. We obtained clear densities of several compounds in complex with an α-synuclein fibril. These structures unveil the basic mechanism of the ligand-fibril interaction, which exhibits remarkable difference from the canonical ligand-protein interaction. In addition, we discovered a druggable pocket that is also conserved in the ex vivo α-synuclein fibrils from multiple system atrophy. Collectively, these findings expand our knowledge of protein-ligand interaction in the amyloid fibril state, which will enable rational design of amyloid binders in a medicinally beneficial way.


Assuntos
Amiloide , alfa-Sinucleína , alfa-Sinucleína/química , Microscopia Crioeletrônica , Amiloide/química , Ligantes
3.
Curr Opin Chem Biol ; 74: 102291, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37004350

RESUMO

Protein liquid-liquid phase separation drives the dynamic assembly of membraneless organelles for fulfilling different physiological functions. Under diseased condition, protein may undergo liquid-to-solid condensation to form pathological amyloid aggregates closely associated with neurodegenerative diseases. Chemical probe serves as an important chemical tool not only for exploring the basic principle of the dynamic assembly of different protein condensates in vitro and in cell but also for clinical diagnosis and therapeutics of the related diseases. In this review, we first introduce chemical probes to image and regulate protein condensates. Then, we summarized three different categories of chemical probes including general amyloid dye, selective positron emission tomography tracer, and disaggregating binder, which feature distinct interaction pattern and activity upon binding to different pathological amyloid fibrillar aggregates. Next, we discuss the development of chemical probes for tracking protein amorphous aggregates in cells. Finally, we point out future direction in expanding the probes' chemical space and applications.


Assuntos
Doenças Neurodegenerativas , Tomografia Computadorizada por Raios X , Humanos , Doenças Neurodegenerativas/metabolismo , Amiloide
4.
Fundam Res ; 3(4): 505-519, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38933553

RESUMO

Abnormal aggregation and accumulation of pathological amyloid proteins such as amyloid-ß, Tau, and α-synuclein play key pathological roles and serve as histological hallmarks in different neurodegenerative diseases (NDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, various post-translational modifications (PTMs) have been identified on pathological amyloid proteins and are subjected to change during disease progression. Given the central role of amyloid proteins in NDs, tremendous efforts have been made to develop amyloid-targeting strategies for clinical diagnosis and molecular classification of NDs. In this review, we summarize two major strategies for targeting amyloid aggregates, with a focus on the trials in AD diagnosis. The first strategy is a positron emission tomography (PET) scan of protein aggregation in the brain. We mainly focus on introducing the development of small-molecule PET tracers for specifically recognizing pathological amyloid fibrils. The second strategy is the detection of PTM biomarkers on amyloid proteins in cerebrospinal fluid and plasma. We discuss the pathological roles of different PTMs in diseases and how we can use the PTM profile of amyloid proteins for clinical diagnosis. Finally, we point out the potential technical challenges of these two strategies, and outline other potential strategies, as well as a combination of multiple strategies, for molecular diagnosis of NDs.

5.
iScience ; 25(12): 105645, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505939

RESUMO

In vitro assembly of amyloid fibrils that recapitulate those in human brains is very useful for fundamental and applied research on the amyloid formation, pathology, and clinical detection. Recent success in the assembly of Tau fibrils in vitro enables the recapitulation of the paired helical filament (PHF) of Tau extracted from brains of patients with Alzheimer's disease (AD). However, following the protocol, we observed that Tau constructs including 297-391 and a mixture of 266-391 (3R)/297-391, which are expected to predominantly form PHF-like fibrils, form highly heterogeneous fibrils instead. Moreover, the seemingly PHF-like fibril formed by Tau 297-391 exhibits a distinctive atomic structure with a spindle-like fold, that is neither PHF-like or similar to any known Tau fibril structures revealed by cryo-electron microscopy (cryo-EM). Our work highlights the high sensitivity of amyloid fibril formation to subtle conditional changes and suggests high-resolution structural characterization to in vitro assembled fibrils prior to further laboratory use.

6.
Proc Natl Acad Sci U S A ; 119(43): e2205255119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36256816

RESUMO

Protein arginine methylation plays an important role in regulating protein functions in different cellular processes, and its dysregulation may lead to a variety of human diseases. Recently, arginine methylation was found to be involved in modulating protein liquid-liquid phase separation (LLPS), which drives the formation of different membraneless organelles (MLOs). Here, we developed a steric effect-based chemical-enrichment method (SECEM) coupled with liquid chromatography-tandem mass spectrometry to analyze arginine dimethylation (DMA) at the proteome level. We revealed by SECEM that, in mammalian cells, the DMA sites occurring in the RG/RGG motifs are preferentially enriched within the proteins identified in different MLOs, especially stress granules (SGs). Notably, global decrease of protein arginine methylation severely impairs the dynamic assembly and disassembly of SGs. By further profiling the dynamic change of DMA upon SG formation by SECEM, we identified that the most dramatic change of DMA occurs at multiple sites of RG/RGG-rich regions from several key SG-contained proteins, including G3BP1, FUS, hnRNPA1, and KHDRBS1. Moreover, both in vitro arginine methylation and mutation of the identified DMA sites significantly impair LLPS capability of the four different RG/RGG-rich regions. Overall, we provide a global profiling of the dynamic changes of protein DMA in the mammalian cells under different stress conditions by SECEM and reveal the important role of DMA in regulating protein LLPS and SG dynamics.


Assuntos
Arginina , Grânulos Citoplasmáticos , Animais , Humanos , Arginina/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteoma/metabolismo , Mamíferos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
7.
iScience ; 25(6): 104356, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35620440

RESUMO

Hsp70 is a key molecular chaperone in the protein quality control system to safeguard protein homeostasis in cells. Previous studies have shown that Hsp70 chaperones TDP-43, a pathogenic protein associated with amyotrophic lateral sclerosis (ALS), in nuclear bodies and prevents it from the pathological aggregation. In this work, we report that Hsp70 undergoes liquid-liquid phase separation, chaperones FUS, another ALS-linked pathogenic protein, in stress granules (SGs), and prevents condensed FUS from amyloid aggregation. Knock-down of Hsp70 does not influence SG assembly but results in the liquid-to-solid transition in SGs. NMR experiments further reveal Hsp70 predominantly uses its C-terminal substrate-binding domain to interact with the low complexity domain of FUS, which represents a mechanism distinct from that interacting with TDP-43. These findings suggest that Hsp70 is widely involved in chaperoning the physiological dynamics of various membrane-less organelles and adopts different mechanisms to prevent the pathological aggregation of different proteins.

9.
Protein Cell ; 13(8): 602-614, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35384603

RESUMO

The nucleocapsid (N) protein of SARS-CoV-2 has been reported to have a high ability of liquid-liquid phase separation, which enables its incorporation into stress granules (SGs) of host cells. However, whether SG invasion by N protein occurs in the scenario of SARS-CoV-2 infection is unknow, neither do we know its consequence. Here, we used SARS-CoV-2 to infect mammalian cells and observed the incorporation of N protein into SGs, which resulted in markedly impaired self-disassembly but stimulated cell cellular clearance of SGs. NMR experiments further showed that N protein binds to the SG-related amyloid proteins via non-specific transient interactions, which not only expedites the phase transition of these proteins to aberrant amyloid aggregation in vitro, but also promotes the aggregation of FUS with ALS-associated P525L mutation in cells. In addition, we found that ACE2 is not necessary for the infection of SARS-CoV-2 to mammalian cells. Our work indicates that SARS-CoV-2 infection can impair the disassembly of host SGs and promote the aggregation of SG-related amyloid proteins, which may lead to an increased risk of neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica , COVID-19 , Proteínas Amiloidogênicas/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Grânulos Citoplasmáticos/metabolismo , Mamíferos , SARS-CoV-2 , Grânulos de Estresse
10.
iScience ; 25(1): 103701, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35036880

RESUMO

FUS is a multifunctional nuclear protein which undergoes liquid-liquid phase separation in response to stress and DNA damage. Dysregulation of FUS dynamic phase separation leads to formation of pathological fibril closely associated with neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal dementia. In this study, we determined the cryo-EM structure of a cytotoxic fibril formed by the low-complexity (LC) domain of FUS at 2.9 Å resolution. The fibril structure exhibits a new and extensive serpentine fold consisting of three motifs incorporating together via a Tyr triad. FUS LC employs 91 residues to form an enlarged and stable fibril core via hydrophilic interaction and hydrogen bonds, which is distinct from most of previously determined fibrils commonly stabilized by hydrophobic interaction. Our work reveals the structural basis underlying formation of a cytotoxic and thermostable fibril of FUS LC and sheds light on understanding the liquid-to-solid phase transition of FUS in disease.

11.
J Neuroinflammation ; 18(1): 281, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861878

RESUMO

BACKGROUND: Neuroinflammation is thought to be a cause of Alzheimer's disease (AD), which is partly caused by inadequate mitophagy. As a receptor of mitophagy, we aimed to reveal the regulatory roles of optineurin (OPTN) on neuroinflammation in the pathogenesis of AD. METHODS: BV2 cells and APP/PS1 transgenic (Tg) mice were used as in vitro and in vivo experimental models to determine the regulatory roles of OPTN in neuroinflammation of AD. Sophisticated molecular technologies including quantitative (q) RT-PCR, western blot, enzyme linked immunosorbent assay (ELISA), co-immunoprecipitation (Co-IP) and immunofluorescence (IF) were employed to reveal the inherent mechanisms. RESULTS: As a consequence, key roles of OPTN in regulating neuroinflammation were identified by depressing the activity of absent in melanoma 2 (AIM2) inflammasomes and receptor interacting serine/threonine kinase 1 (RIPK1)-mediated NF-κB inflammatory mechanisms. In detail, we found that expression of OPTN was downregulated, which resulted in activation of AIM2 inflammasomes due to a deficiency in mitophagy in APP/PS1 Tg mice. By ectopic expression, OPTN blocks the effects of Aß oligomer (Aßo) on activating AIM2 inflammasomes by inhibiting mRNA expression of AIM2 and apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), leading to a reduction in the active form of caspase-1 and interleukin (IL)-1ß in microglial cells. Moreover, RIPK1 was also found to be negatively regulated by OPTN via ubiquitin protease hydrolysis, resulting in the synthesis of IL-1ß by activating the transcriptional activity of NF-κB in BV2 cells. As an E3 ligase, the UBAN domain of OPTN binds to the death domain (DD) of RIPK1 to facilitate its ubiquitination. Based on these observations, ectopically expressed OPTN in APP/PS1 Tg mice deactivated microglial cells and astrocytes via the AIM2 inflammasome and RIPK-dependent NF-κB pathways, leading to reduce neuroinflammation. CONCLUSIONS: These results suggest that OPTN can alleviate neuroinflammation through AIM2 and RIPK1 pathways, suggesting that OPTN deficiency may be a potential factor leading to the occurrence of AD.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Doenças Neuroinflamatórias/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose/fisiologia , Encéfalo/metabolismo , Caspase 1/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Interleucina-1beta/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Transgênicos , Doenças Neuroinflamatórias/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
12.
Front Neurosci ; 14: 817, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903591

RESUMO

Cyclooxygenase-2 (COX-2) is reported to be activated during the course of amyotrophic lateral sclerosis (ALS) development and progression. However, the roles of COX-2 in aggravating ALS and the underlying mechanism have been largely overlooked. To reveal the mechanisms, the canonical SOD1G93A mouse model was used as an experimental model for ALS in the current study. In addition, a specific inhibitor of COX-2 activity, rofecoxib, was orally administered to SOD1G93A mice. With this in vivo approach, we revealed that COX-2 proinflammatory signaling cascades were inhibited by rofecoxib in SOD1G93A mice. Specifically, the protein levels of COX-2, interleukin (IL)-1ß, and tumor necrosis factor (TNF)-α were elevated as a result of activation of astrocytes and microglia during the course of ALS development and progression. These proinflammatory reactions may contribute to the death of neurons by triggering the movement of astrocytes and microglia to neurons in the context of ALS. Treatment with rofecoxib alleviated this close association between glial cells and neurons and significantly decreased the density of inflammatory cells, which helped to restore the number of motor neurons in SOD1G93A mice. Mechanistically, rofecoxib treatment decreased the expression of COX-2 and its downstream signaling targets, including IL-1ß and TNF-α, by deactivating glial cells, which in turn ameliorated the progression of SOD1G93A mice by postponing disease onset and modestly prolonging survival. Collectively, these results provide novel insights into the mechanisms of ALS and aid in the development of new drugs to improve the clinical treatment of ALS.

13.
Front Mol Neurosci ; 13: 613421, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519376

RESUMO

Clinical studies have found that some Alzheimer's disease (AD) patients suffer from Cushing's syndrome (CS). CS is caused by the long-term release of excess glucocorticoids (GCs) from the adrenal gland, which in turn, impair brain function and induce dementia. Thus, we investigated the mechanism of the effect of corticosterone (CORT) on the development and progression of AD in a preclinical model. Specifically, the plasma CORT levels of 9-month-old APP/PS1 Tg mice were abnormally increased, suggesting an association between GCs and AD. Long-term administration of CORT accelerated cognitive dysfunction by increasing the production and deposition of ß-amyloid (Aß). The mechanism of action of CORT treatment involved stimulation of the expression of BACE-1 and presenilin (PS) 1 in in vitro and in vivo. This observation was confirmed in mice with adrenalectomy (ADX), which had lower levels of GCs. Moreover, the glucocorticoid receptor (GR) mediated the effects of CORT on the stimulation of the expression of BACE-1 and PS1 via the PKA and CREB pathways in neuroblastoma N2a cells. In addition to these mechanisms, CORT can induce a cognitive decline in APP/PS1 Tg mice by inducing apoptosis and decreasing the differentiation of neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...