Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Environ Int ; 189: 108794, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38833876

RESUMO

Indoor semivolatile organic compounds (SVOCs) pose a substantial threat to human health. However, identifying the sources of these emissions has been challenging owing to the scarcity of convenient and practical on-site methodologies. Herein, a novel method for source screening was proposed using aluminum silicate sampling strips to adsorb SVOCs from the surface air of indoor materials. The adsorbed SVOC levels indicate the emission intensity of these materials into indoor environments. Additionally, compact sampling strips can be readily fixed to any vertical surface using a static sticker, facilitating the characterization of various materials in practical settings. Laboratory-simulated experiments demonstrated the capability of the proposed method to differentiate between source and non-source materials within a 10-cm distance in the same space. In practical scenarios, the primary emission sources identified via this method exhibited a consistent correlation with the contents of the corresponding materials obtained from the traditional solvent-extraction method. As the adsorbed SVOCs were directly transferred to a GC-MS through thermal desorption instead of the solvent-extraction procedure, the proposed method demonstrated several-fold improvements in analytical sensitivity and efficiency. Using this versatile screening technique, some emerging and important SVOC species were identified within specific indoor materials. Eliminating these sources has been demonstrated as an effective approach to mitigate SVOC pollution. Overall, the proposed method offers a powerful tool for managing indoor pollutants and safeguarding human health.

2.
Clin Transl Allergy ; 14(6): e12359, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860615

RESUMO

OBJECTIVE: This work endeavored to examine the correlation between dietary choline intake and the odds of asthma, utilizing data from the National Health and Nutrition Examination Survey (NHANES). METHODS: Aggregated data from seven cycles (2005-2018) in the NHANES database were utilized. The independent variable was dietary choline intake, and the dependent variable was asthma. The weighted logistic regression method was used to construct a model reflecting the relationship between these two factors. This work employed stratified analysis without adjusting for confounding factors and subgroup analysis with adjusted confounding factors to mine the association between dietary choline intake and asthma. Additionally, restricted cubic spline analysis examined nonlinear associations of the two in age subgroups. RESULTS: Forty five thousand and seven hundreds ninety seven samples were included here. The model indicating the relationship between dietary choline intake and asthma was constructed (OR: 0.86, 95% CI: 0.79-0.93, p < 0.001). Stratified analysis indicated that the interaction terms of age (p < 0.001) and body mass index (BMI) (p = 0.002) with dietary choline intake significantly influenced the relationship model. In the adjusted models, accounting for demographic characteristics, poverty impact ratio, BMI, exposure to environmental tobacco smoke, and total energy intake, an increase in dietary choline intake significantly reduced the odds of asthma (OR: 0.79, 95% CI: 0.72-0.88, p < 0.001). Subgroup analyses based on age and BMI revealed a significant negative correlation between dietary choline intake and the odds of asthma in the adult population (OR: 0.76, 95% CI: 0.67-0.86, p < 0.001), as well as in individuals with a BMI between 25 and 30 kg/m2 (OR: 0.79, 95% CI: 0.63-0.99, p = 0.042), and those with a BMI >30 kg/m2 (OR: 0.73, 95% CI: 0.60-0.89, p = 0.002). CONCLUSION: Dietary choline intake was significantly inversely correlated with asthma prevalence, especially in adults and overweight/obese individuals, suggesting that increasing choline intake may reduce asthma risk. Further research is needed to explore this relationship and provide tailored dietary recommendations for different age and BMI groups to enhance asthma prevention and management.

3.
Biol Pharm Bull ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866477

RESUMO

Ethanol (alcohol) is a risk factor that contributes to non-communicable diseases. Chronic abuse of ethanol is toxic to both the heart and overall health, and even results in death. Ethanol and its byproduct acetaldehyde can harm the cardiovascular system by impairing mitochondrial function, causing oxidative damage, and reducing contractile proteins. Endothelial cells are essential components of the cardiovascular system, are highly susceptible to ethanol, either through direct or indirect exposure. Thus, protection against endothelial injury is of great importance for persons who chronic abuse of ethanol. In this study, an in vitro model of endothelial injury was created using ethanol. The findings revealed that a concentration of 20.0 mM of ethanol reduced cell viability and Bcl-2 expression, while increasing cell apoptosis, intracellular ROS levels, mitochondrial depolarization, and the expression of Bax and cleaved-caspase-3 in endothelial cells. Further study showed that ethanol promoted nuclear translocation of NF-κB, increased the secretion of TNF-α,IL-1ß, IL-6 in the culture medium, and inhibited Nrf2 signaling pathway. The aforementioned findings suggest that ethanol has a harmful impact on endothelial cells. Nevertheless, the application of epigallocatechin-3-gallate (EGCG) to the cells can effectively mitigate the detrimental effects of ethanol on endothelial cells. In conclusion, EGCG alleviates ethanol-induced endothelial injury partly through alteration of NF-κB translocation and activation of the Nrf2 signaling pathway. Therefore, EGCG holds great potential in safeguarding individuals who chronically abuse ethanol from endothelial dysfunction.

4.
Nanomedicine ; 60: 102758, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852881

RESUMO

The clinical application of tumor necrosis factor-α (TNF-α) is limited by its short half-life, subeffective concentration in the targeted area and severe systemic toxicity. In this study, the recombinant polypeptide S4-TNF-α was constructed and coupled with chitosan-modified superparamagnetic iron oxide nanoparticles (S4-TNF-α-SPIONs) to achieve pH-sensitive controlled release and active tumor targeting activity. The isoelectric point (pI) of S4-TNF-α was reconstructed to approach the pH of the tumor microenvironment. The negative-charge S4-TNF-α was adsorbed to chitosan-modified superparamagnetic iron oxide nanoparticles (CS-SPIONs) with a positive charge through electrostatic adsorption at physiological pH. The acidic tumor microenvironment endowed S4-TNF-α with a zero charge, which accelerated S4-TNF-α release from CS-SPIONs. Our studies showed that S4-TNF-α-SPIONs displayed an ideal pH-sensitive controlled release capacity and improved antitumor effects. Our study presents a novel approach to enhance the pH-sensitive controlled-release of genetically engineered drugs by adjusting their pI to match the pH of the tumor microenvironment.

5.
Opt Lett ; 49(10): 2705-2708, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748141

RESUMO

The silicon thermo-optic switch (TOS) is one of the most fundamental and crucial blocks in large-scale silicon photonic integrated circuits (PICs). An energy-efficient silicon TOS with ultrahigh extinction ratio can effectively mitigate cross talk and reduce power consumption in optical systems. In this Letter, we demonstrate a silicon TOS based on cascading Mach-Zehnder interferometers (MZIs) with spiral thermo-optic phase shifters. The experimental results show that an ultrahigh extinction ratio of 58.8 dB is obtained, and the switching power consumption is as low as 2.32 mW/π without silicon air trench. The rise time and fall time of the silicon TOS are about 10.8 and 11.2 µs, respectively. Particularly, the figure of merit (FOM) has been improved compared with previously reported silicon TOS. The proposed silicon TOS may find potential applications in optical switch arrays, on-chip optical delay lines, etc.

6.
ACS Omega ; 9(20): 21768-21779, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799322

RESUMO

Thrombolytic enzymes constitute a class of proteases with antithrombotic functions. Derived from natural products and abundant in nature, certain thrombolytic enzymes, such as urokinase, earthworm kinase, and streptokinase, have been widely used in the clinical treatment of vascular embolic diseases. Fly maggots, characterized by their easy growth and low cost, are a traditional Chinese medicine recorded in the Compendium of Materia Medica. These maggots can also be used as raw material for the extraction and preparation of thrombolytic enzymes (maggot kinase). In this review, we assembled global research reports on natural thrombolytic enzymes through a literature search and reviewed the functions and structures of natural thrombolytic enzymes to provide a reference for natural thrombophilic drug screening and development.

7.
Sci Total Environ ; 933: 173208, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38750758

RESUMO

In this study, 3,4,3',4'-tetrachlorobiphenyl (PCB77) contaminated soil was remediated by a fluidization bed dielectric barrier discharge (DBD) reactor and a fixed bed DBD reactor. The fluidized bed reactor could attain superior removal efficiency of PCB77 under same experimental parameters. In-situ discharge mode was more conducive to the degradation of PCB77 than ex-situ discharge mode due to short-lived active species existing in in-situ discharge. The influence of experimental parameters in the fluidized bed DBD reactor on the degradation of PCB77 were discussed such as electric features, gas features, soil features and initial PCB77 concentration. PCB77 removal efficiency in air discharge could reach 88.5 % after 8 min under the alkaline condition. Optical emission spectroscopy (OES) and quench tests showed that reactive oxygen species (ROS) and reactive nitrogen species (RNS) were generated in the discharge system and they both played a vital role in the degradation of PCB77. Scanning electron microscopy (SEM) results demonstrated that discharge had little effect on the morphology of soil particles. Energy dispersive spectrometer (EDS), ion chromatography (IC), and total organic carbon (TOC) results showed that the DBD could effectively mineralize and dechlorinate PCB77. The possible degradation pathway of PCB77 was inferred at the end based on the degradation products determined by gas chromatography-mass spectrometry (GC-MS).

8.
Nano Lett ; 24(19): 5791-5798, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695400

RESUMO

The second-order nonlinear transport illuminates a frequency-doubling response emerging in quantum materials with a broken inversion symmetry. The two principal driving mechanisms, the Berry curvature dipole and the skew scattering, reflect various information including ground-state symmetries, band dispersions, and topology of electronic wave functions. However, effective manipulation of them in a single system has been lacking, hindering the pursuit of strong responses. Here, we report on the effective manipulation of the two mechanisms in a single graphene moiré superlattice, AB-BA stacked twisted double bilayer graphene. Most saliently, by virtue of the high tunability of moiré band structures and scattering rates, a record-high second-order transverse conductivity ∼ 510 µm S V-1 is observed, which is orders of magnitude higher than any reported values in the literature. Our findings establish the potential of electrically tunable graphene moiré systems for nonlinear transport manipulations and applications.

9.
Sci Rep ; 14(1): 11799, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782981

RESUMO

To address the issues of low accuracy and slow response speed in tea disease classification and identification, an improved YOLOv7 lightweight model was proposed in this study. The lightweight MobileNeXt was used as the backbone network to reduce computational load and enhance efficiency. Additionally, a dual-layer routing attention mechanism was introduced to enhance the model's ability to capture crucial details and textures in disease images, thereby improving accuracy. The SIoU loss function was employed to mitigate missed and erroneous judgments, resulting in improved recognition amidst complex image backgrounds.The revised model achieved precision, recall, and average precision of 93.5%, 89.9%, and 92.1%, respectively, representing increases of 4.5%, 1.9%, and 2.6% over the original model. Furthermore, the model's volum was reduced by 24.69M, the total param was reduced by 12.88M, while detection speed was increased by 24.41 frames per second. This enhanced model efficiently and accurately identifies tea disease types, offering the benefits of lower parameter count and faster detection, thereby establishing a robust foundation for tea disease monitoring and prevention efforts.


Assuntos
Doenças das Plantas , Chá , Algoritmos , Camellia sinensis/classificação , Processamento de Imagem Assistida por Computador/métodos
10.
Nat Commun ; 15(1): 4512, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802369

RESUMO

In higher plants, mature male gametophytes have distinct apertures. After pollination, pollen grains germinate, and a pollen tube grows from the aperture to deliver sperm cells to the embryo sac, completing fertilization. In rice, the pollen aperture has a single-pore structure with a collar-like annulus and a plug-like operculum. A crucial step in aperture development is the formation of aperture plasma membrane protrusion (APMP) at the distal polar region of the microspore during the late tetrad stage. Previous studies identified OsINP1 and OsDAF1 as essential regulators of APMP and pollen aperture formation in rice, but their precise molecular mechanisms remain unclear. We demonstrate that the Poaceae-specific OsSRF8 gene, encoding a STRUBBELIG-receptor family 8 protein, is essential for pollen aperture formation in Oryza sativa. Mutants lacking functional OsSRF8 exhibit defects in APMP and pollen aperture formation, like loss-of-function OsINP1 mutants. OsSRF8 is specifically expressed during early anther development and initially diffusely distributed in the microsporocytes. At the tetrad stage, OsSRF8 is recruited by OsINP1 to the pre-aperture region through direct protein-protein interaction, promoting APMP formation. The OsSRF8-OsINP1 complex then recruits OsDAF1 to the APMP site to co-regulate annulus formation. Our findings provide insights into the mechanisms controlling pollen aperture formation in cereal species.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Pólen , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pólen/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Mutação , Polinização , Membrana Celular/metabolismo , Plantas Geneticamente Modificadas , Tubo Polínico/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/genética
11.
ACS Nano ; 18(21): 13662-13674, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752487

RESUMO

Porous copper (Cu) current collectors show promise in stabilizing Li metal anodes (LMAs). However, insufficient lithiophilicity of pure Cu and limited porosity in three-dimensional (3D) porous Cu structures led to an inefficient Li-Cu composite preparation and poor electrochemical performance of Li-Cu composite anodes. Herein, we propose a porous Cu-CuZn (DG-CCZ) host for Li composite anodes to tackle these issues. This architecture features a pore size distribution and lithiophilic-lithiophobic characteristics designed in a gradient distribution from the inside to the outside of the anode structure. This dual-gradient porous Cu-CuZn exhibits exceptional capillary wettability to molten Li and provides a high porosity of up to 66.05%. This design promotes preferential Li deposition in the interior of the porous structure during battery operation, effectively inhibiting Li dendrite formation. Consequently, all cell systems achieve significantly improved cycling stability, including Li half-cells, Li-Li symmetric cells, and Li-LFP full cells. When paired synergistically with the double-coated LiFePO4 cathode, the pouch cell configured with multiple electrodes demonstrates an impressive discharge capacity of 159.3 mAh g-1 at 1C. We believe this study can inspire the design of future 3D Li anodes with enhanced Li utilization efficiency and facilitate the development of future high-energy Li metal batteries.

12.
Cancer Lett ; 594: 216981, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38795761

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC), a leading cause of cancer mortality, has a complex pathogenesis involving various immune cells, including B cells and their subpopulations. Despite emerging research on the role of these cells within the tumor microenvironment (TME), the detailed molecular interactions with tumor-infiltrating immune cells (TIICs) are not fully understood. METHODS: We applied CIBERSORT to quantify TIICs and naive B cells, which are prognostic for PDAC. Marker genes from scRNA-seq and modular genes from weighted gene co-expression network analysis (WGCNA) were integrated to identify naive B cell-related genes. A prognostic signature was constructed utilizing ten machine-learning algorithms, with validation in external cohorts. We further assessed the immune cell diversity, ESTIMATE scores, and immune checkpoint genes (ICGs) between patient groups stratified by risk to clarify the immune landscape in PDAC. RESULTS: Our analysis identified 994 naive B cell-related genes across single-cell and bulk transcriptomes, with 247 linked to overall survival. We developed a 12-gene prognostic signature using Lasso and plsRcox algorithms, which was confirmed by 10-fold cross-validation and showed robust predictive power in training and real-world cohorts. Notably, we observed substantial differences in immune infiltration between patients with high and low risk. CONCLUSION: Our study presents a robust prognostic signature that effectively maps the complex immune interactions in PDAC, emphasizing the critical function of naive B cells and suggesting new avenues for immunotherapeutic interventions. This signature has potential clinical applications in personalizing PDAC treatment, enhancing the understanding of immune dynamics, and guiding immunotherapy strategies.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/mortalidade , Prognóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/mortalidade , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Linfócitos B/imunologia , Linfócitos do Interstício Tumoral/imunologia , Regulação Neoplásica da Expressão Gênica , Aprendizado de Máquina , Transcriptoma , Perfilação da Expressão Gênica/métodos , Masculino , Feminino
13.
Cancer Sci ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38685894

RESUMO

Multiple Endocrine Neoplasia 1 gene (MEN1), which is known to be a tumor suppressor gene in lung tissues, encodes a 610 amino acid protein menin. Previous research has proven that MEN1 deficiency promotes the malignant progression of lung cancer. However, the biological role of this gene in the immune microenvironment of lung cancer remains unclear. In this study, we found that programmed cell death-ligand 1 (PD-L1) is upregulated in lung-specific KrasG12D mutation-induced lung adenocarcinoma in mice, after Men1 deficiency. Simultaneously, CD8+ and CD3+ T cells are depleted, and their cytotoxic effects are suppressed. In vitro, PD-L1 is inhibited by the overexpression of menin. Mechanistically, we found that MEN1 inactivation promotes the deubiquitinating activity of COP9 signalosome subunit 5 (CSN5) and subsequently increases the level of PD-L1.

14.
Acta Biomater ; 180: 82-103, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621599

RESUMO

The treatment of osteoporotic bone defect remains a big clinical challenge because osteoporosis (OP) is associated with oxidative stress and high levels of reactive oxygen species (ROS), a condition detrimental for bone formation. Anti-oxidative nanomaterials such as selenium nanoparticles (SeNPs) have positive effect on osteogenesis owing to their pleiotropic pharmacological activity which can exert anti-oxidative stress functions to prevent bone loss and facilitate bone regeneration in OP. In the current study a strategy of one-pot method by introducing Poly (lactic acid-carbonate) (PDT) and ß-Tricalcium Phosphate (ß-TCP) with SeNPs, is developed to prepare an injectable, anti-collapse, shape-adaptive and adhesive bone graft substitute material (PDT-TCP-SE). The PDT-TCP-SE bone graft substitute exhibits sufficient adhesion in biological microenvironments and osteoinductive activity, angiogenic effect and anti-inflammatory as well as anti-oxidative effect in vitro and in vivo. Moreover, the PDT-TCP-SE can protect BMSCs from erastin-induced ferroptosis through the Sirt1/Nrf2/GPX4 antioxidant pathway, which, in together, demonstrated the bone graft substitute material as an emerging biomaterial with potential clinical application for the future treatment of osteoporotic bone defect. STATEMENT OF SIGNIFICANCE: Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute was successfully synthesized. Incorporation of SeNPs with PDT into ß-TCP regenerated new bone in-situ by moderating oxidative stress in osteoporotic bone defects area. The PDT-TCP-SE bone graft substitute reduced high ROS levels in osteoporotic bone defect microenvironment. The bone graft substitute could also moderate oxidative stress and inhibit ferroptosis via Sirt1/Nrf2/GPX4 pathway in vitro. Moreover, the PDT-TCP-SE bone graft substitute could alleviate the inflammatory environment and promote bone regeneration in osteoporotic bone defect in vivo. This biomaterial has the advantages of simple synthesis, biocompatibility, anti-collapse, injectable, and regulation of oxidative stress level, which has potential application value in bone tissue engineering.


Assuntos
Regeneração Óssea , Substitutos Ósseos , Fosfatos de Cálcio , Osteoporose , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Osteoporose/patologia , Osteoporose/terapia , Osteoporose/tratamento farmacológico , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Ratos Sprague-Dawley , Selênio/química , Selênio/farmacologia , Feminino , Osteogênese/efeitos dos fármacos , Poliésteres/química , Poliésteres/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos , Injeções
15.
ACS Nano ; 18(11): 7937-7944, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38441035

RESUMO

Strongly correlated states commonly emerge in twisted bilayer graphene (TBG) with "magic-angle" (1.1°), where the electron-electron (e-e) interaction U becomes prominent relative to the small bandwidth W of the nearly flat band. However, the stringent requirement of this magic angle makes the sample preparation and the further application facing great challenges. Here, using scanning tunneling microscopy (STM) and spectroscopy (STS), we demonstrate that the correlation-induced symmetry-broken states can also be achieved in a 3.45° TBG, via engineering this nonmagic-angle TBG into regimes of U/W > 1. We enhance the e-e interaction through controlling the microscopic dielectric environment by using a MoS2 substrate. Simultaneously, the width of the low-energy van Hove singularity (VHS) peak is reduced by enhancing the interlayer coupling via STM tip modulation. When partially filled, the VHS peak exhibits a giant splitting into two states flanked by the Fermi level and shows a symmetry-broken LDOS distribution with a stripy charge order, which confirms the existence of strong correlation effect in our 3.45° TBG. Our result demonstrates the feasibility of the study and application of the correlation physics in TBGs with a wider range of twist angle.

16.
Acta Pharm Sin B ; 14(3): 1222-1240, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486990

RESUMO

Hyperplasia and migration of fibroblast-like synoviocytes (FLSs) are the key drivers in the pathogenesis of rheumatoid arthritis (RA) and joint destruction. Abundant Yes-associated protein (YAP), which is a powerful transcription co-activator for proliferative genes, was observed in the nucleus of inflammatory FLSs with unknown upstream mechanisms. Using Gene Expression Omnibus database analysis, it was found that Salvador homolog-1 (SAV1), the pivotal negative regulator of the Hippo-YAP pathway, was slightly downregulated in RA synovium. However, SAV1 protein expression is extremely reduced. Subsequently, it was revealed that SAV1 is phosphorylated, ubiquitinated, and degraded by interacting with an important serine-threonine kinase, G protein-coupled receptor (GPCR) kinase 2 (GRK2), which was predominately upregulated by GPCR activation induced by ligands such as prostaglandin E2 (PGE2) in RA. This process further contributes to the decreased phosphorylation, nuclear translocation, and transcriptional potency of YAP, and leads to aberrant FLSs proliferation. Genetic depletion of GRK2 or inhibition of GRK2 by paroxetine rescued SAV1 expression and restored YAP phosphorylation and finally inhibited RA FLSs proliferation and migration. Similarly, paroxetine treatment effectively reduced the abnormal proliferation of FLSs in a rat model of collagen-induced arthritis which was accompanied by a significant improvement in clinical manifestations. Collectively, these results elucidate the significance of GRK2 regulation of Hippo-YAP signaling in FLSs proliferation and migration and the potential application of GRK2 inhibition in the treatment of FLSs-driven joint destruction in RA.

17.
BMC Womens Health ; 24(1): 182, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504245

RESUMO

BACKGROUND: Surgery combined with radiotherapy substantially escalates the likelihood of encountering complications in early-stage cervical squamous cell carcinoma(ESCSCC). We aimed to investigate the feasibility of Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in ESCSCC and minimize the occurrence of adverse events associated with the treatment. METHODS: A dataset comprising MR images was obtained from 289 patients who underwent radical hysterectomy and pelvic lymph node dissection between January 2019 and April 2022. The dataset was randomly divided into two cohorts in a 4:1 ratio.The postoperative radiotherapy options were evaluated according to the Peter/Sedlis standard. We extracted clinical features, as well as intratumoral and peritumoral radiomic features, using the least absolute shrinkage and selection operator (LASSO) regression. We constructed the Clinical Signature (Clinic_Sig), Radiomics Signature (Rad_Sig) and the Deep Transformer Learning Signature (DTL_Sig). Additionally, we fused the Rad_Sig with the DTL_Sig to create the Deep Learning Radiomic Signature (DLR_Sig). We evaluated the prediction performance of the models using the Area Under the Curve (AUC), calibration curve, and Decision Curve Analysis (DCA). RESULTS: The DLR_Sig showed a high level of accuracy and predictive capability, as demonstrated by the area under the curve (AUC) of 0.98(95% CI: 0.97-0.99) for the training cohort and 0.79(95% CI: 0.67-0.90) for the test cohort. In addition, the Hosmer-Lemeshow test, which provided p-values of 0.87 for the training cohort and 0.15 for the test cohort, respectively, indicated a good fit. DeLong test showed that the predictive effectiveness of DLR_Sig was significantly better than that of the Clinic_Sig(P < 0.05 both the training and test cohorts). The calibration plot of DLR_Sig indicated excellent consistency between the actual and predicted probabilities, while the DCA curve demonstrating greater clinical utility for predicting the pathological features for adjuvant radiotherapy. CONCLUSION: DLR_Sig based on intratumoral and peritumoral MRI images has the potential to preoperatively predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma (ESCSCC).


Assuntos
Carcinoma de Células Escamosas , Aprendizado Profundo , Neoplasias do Colo do Útero , Feminino , Humanos , Radioterapia Adjuvante , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/radioterapia , Radiômica , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Imageamento por Ressonância Magnética , Estudos Retrospectivos
18.
Acta Pharmacol Sin ; 45(6): 1201-1213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491160

RESUMO

The angiotensin II type 2 receptor (AT2R) is a well-established component of the renin-angiotensin system and is known to counteract classical activation of this system and protect against organ damage. Pharmacological activation of the AT2R has significant therapeutic benefits, including vasodilation, natriuresis, anti-inflammatory activity, and improved insulin sensitivity. However, the precise biological functions of the AT2R in maintaining homeostasis in liver tissue remain largely unexplored. In this study, we found that the AT2R facilitates liver repair and regeneration following acute injury by deactivating Hippo signaling and that interleukin-6 transcriptionally upregulates expression of the AT2R in hepatocytes through STAT3 acting as a transcription activator binding to promoter regions of the AT2R. Subsequently, elevated AT2R levels activate downstream signaling via heterotrimeric G protein Gα12/13-coupled signals to induce Yap activity, thereby contributing to repair and regeneration processes in the liver. Conversely, a deficiency in the AT2R attenuates regeneration of the liver while increasing susceptibility to acetaminophen-induced liver injury. Administration of an AT2R agonist significantly enhances the repair and regeneration capacity of injured liver tissue. Our findings suggest that the AT2R acts as an upstream regulator in the Hippo pathway and is a potential target in the treatment of liver damage.


Assuntos
Via de Sinalização Hippo , Interleucina-6 , Regeneração Hepática , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases , Receptor Tipo 2 de Angiotensina , Transdução de Sinais , Animais , Masculino , Camundongos , Acetaminofen , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Interleucina-6/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Proteínas de Sinalização YAP/metabolismo
19.
Front Plant Sci ; 15: 1327237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379942

RESUMO

Introduction: In order to solve the problem of precise identification and counting of tea pests, this study has proposed a novel tea pest identification method based on improved YOLOv7 network. Methods: This method used MPDIoU to optimize the original loss function, which improved the convergence speed of the model and simplifies the calculation process. Replace part of the network structure of the original model using Spatial and Channel reconstruction Convolution to reduce redundant features, lower the complexity of the model, and reduce computational costs. The Vision Transformer with Bi-Level Routing Attention has been incorporated to enhance the flexibility of model calculation allocation and content perception. Results: The experimental results revealed that the enhanced YOLOv7 model significantly boosted Precision, Recall, F1, and mAP by 5.68%, 5.14%, 5.41%, and 2.58% respectively, compared to the original YOLOv7. Furthermore, when compared to deep learning networks such as SSD, Faster Region-based Convolutional Neural Network (RCNN), and the original YOLOv7, this method proves to be superior while being externally validated. It exhibited a noticeable improvement in the FPS rates, with increments of 5.75 HZ, 34.42 HZ, and 25.44 HZ respectively. Moreover, the mAP for actual detection experiences significant enhancements, with respective increases of 2.49%, 12.26%, and 7.26%. Additionally, the parameter size is reduced by 1.39 G relative to the original model. Discussion: The improved model can not only identify and count tea pests efficiently and accurately, but also has the characteristics of high recognition rate, low parameters and high detection speed. It is of great significance to achieve realize the intelligent and precise prevention and control of tea pests.

20.
Sci Total Environ ; 917: 170427, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38281637

RESUMO

Although ecological services have been improved in karst desertification control areas, it is still unclear how population shrinkage affects ecosystem service supply capability through ecological assets. In this study, Theil-Sen median, regression analysis, and variance partitioning were applied to explore the linkages of population change (observed data and shared socioeconomic pathways 1-representative concentration pathways 2.6), ecological asset composition (land use), quality (Normalized difference vegetation index [NDVI] and tree height), and ecosystem services in different periods (population growth and decline periods). The results showed that the population change during the growth period (2000-2038) was dominated by migration patterns. In degraded ecoregions (karst desertification) dominated by population out-migration, the net expansion of forest was 15.88 % during 2000-2020, NDVI and tree height increased by 0.57 % and 54.96 %, and ecosystem service supply capability increased by 2.68 %. In contrast, in non-degraded ecoregions (non-karst and karst non-desertification) with population in-migration, change rates of forest (-5.40 % and - 23.68 %), NDVI (0.49 % and 0.53 %), tree height (-8.35 % and - 31.25 %), and ecosystem service supply capability (2.04 % and 2.18 %) were apparently lower than degraded ecoregions. During the population decline period (2039-2100), although the migration pattern between two regions during the growth period was replaced by a population drop within a single region, the positive correlation between population shrinkage with ecological assets and service supply capability was still followed. Overall, the study found that both ways of population shrinkage that involve out-migration and decline can alleviate the land pressure of degraded ecoregions, which enhances ecosystem service supply capability by regulating ecological assets.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Florestas , Árvores , Crescimento Demográfico , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...