Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(50): 56632-56641, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270435

RESUMO

Atomic oxygen (AO) has an important influence on the performance of solid lubricating materials applied in space. The tribological behaviors of both sputtered WS2 films without and with a dense layer were mainly investigated under the ex situ AO irradiation condition. AO irradiation results in the worse tribological property for the WS2 film without a dense layer. On the contrary, it is surprising that the WS2 film with the dense layer exhibits a lower friction coefficient after irradiation, which is different from the reported results that the solid lubricating films always increased the friction and wear because the surfaces of the films were oxidized by AO. Meanwhile, it is found that the generated W oxides contributes to the partial surface of the wear track becoming smooth because of the shear and slip of crystal planes for WS2 crystals on the surface of the dense layer. Eventually, the lubricating mechanisms of the irradiated WS2 films are also revealed via correlating the friction and wear characteristics of the films.

2.
ACS Appl Mater Interfaces ; 10(42): 36531-36539, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30273491

RESUMO

Doped graphite-like coating (GLC) has aroused great interest as one of the most promising protective materials in marine applications. However, there is a lack of systematic research on the tribocorrosion and antifouling performance of doped GLC coatings in harsh marine environments. Herein, a multifunctional (Cr, Cu)-GLC coating with combined antifouling and tribocorrosion properties was prepared via a magnetron sputtering method. The experimental results indicate that the resultant coatings changed from a dense structure to a loose columnar structure with the increment of Cr and Cu doping amount. At the same time, the hardness of the coating gradually decreases, but the contact angle between coating and seawater gradually increases. The algae adhesion test reveal that the algae density on the surface of the (Cr, Cu)-GLC coating decreases from about 565 to 70/mm2 as the amount of doping increased. However, on the contrary, the friction coefficient of the coating under OCP condition increases from 0.06 to about 0.35. Overall, the mild doped (Cr, Cu)-GLC coating exhibits the best comprehensive properties, combining antifouling and tribocorrosion properties. The corresponded mechanisms are discussed in terms of the coating microstructure, antifouling, and tribocorrosion behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...