Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(13): eadk5991, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552019

RESUMO

The mid-Proterozoic, spanning 1.8 to 0.8 billion years ago, is recognized as a phase of marine anoxia, low marine primary productivity (MPP), and constrained eukaryotic biodiversity. However, emerging evidence suggesting intermittent environmental disturbances and concurrent eukaryotic evolution challenges the notion of a stagnant Earth during this era. We present a study detailing volcanic activity and its consequential impact on terrestrial weathering and MPP, elucidated through the examination of 1.4-billion-year-old tropical offshore sediments. Our investigation, leveraging precise mercury (Hg) and lithium (Li) isotopic analyses, reveals the introduction of fresh rock substrates by local volcanism. This geological event initiated a transformative process, shifting the initial regolith-dominated condition in tropical lowland to a regime of enhanced chemical weathering and denudation efficiency. Notably, the heightened influx of nutrient-rich volcanic derivatives, especially phosphorus, spurred MPP rates and heightened organic carbon burial. These factors emerge as potential drivers in breaking the long-term static state of the mid-Proterozoic.

2.
Natl Sci Rev ; 10(11): nwad243, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37900193

RESUMO

Earth has a prolonged history characterized by substantial cycling of matter and energy between multiple spheres. The production of organic carbon can be traced back to as early as ∼4.0 Ga, but the frequency and scale of organic-rich shales have varied markedly over geological time. In this paper, we discuss the organic carbon cycle and the development of black shale from the perspective of Earth System Science. We propose that black shale depositions are the results of interactions among lithospheric evolution, orbital forcing, weathering, photosynthesis and degradation. Black shales can record Earth's oxygenation process, provide petroleum and metallic mineral resources and reveal information about the driver, direction and magnitude of climate change. Future research on black shales should be expanded to encompass a more extensive and more multidimensional perspective.

3.
Nat Commun ; 14(1): 6640, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863885

RESUMO

Controls on Mesoproterozoic ocean redox heterogeneity, and links to nutrient cycling and oxygenation feedbacks, remain poorly resolved. Here, we report ocean redox and phosphorus cycling across two high-resolution sections from the ~1.4 Ga Xiamaling Formation, North China Craton. In the lower section, fluctuations in trade wind intensity regulated the spatial extent of a ferruginous oxygen minimum zone, promoting phosphorus drawdown and persistent oligotrophic conditions. In the upper section, high but variable continental chemical weathering rates led to periodic fluctuations between highly and weakly euxinic conditions, promoting phosphorus recycling and persistent eutrophication. Biogeochemical modeling demonstrates how changes in geographical location relative to global atmospheric circulation cells could have driven these temporal changes in regional ocean biogeochemistry. Our approach suggests that much of the ocean redox heterogeneity apparent in the Mesoproterozoic record can be explained by climate forcing at individual locations, rather than specific events or step-changes in global oceanic redox conditions.

4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074783

RESUMO

Oxygen concentration defines the chemical structure of Earth's ecosystems while it also fuels the metabolism of aerobic organisms. As different aerobes have different oxygen requirements, the evolution of oxygen levels through time has likely impacted both environmental chemistry and the history of life. Understanding the relationship between atmospheric oxygen levels, the chemical environment, and life, however, is hampered by uncertainties in the history of oxygen levels. We report over 5,700 Raman analyses of organic matter from nine geological formations spanning in time from 742 to 1,729 Ma. We find that organic matter was effectively oxidized during weathering and little was recycled into marine sediments. Indeed, during this time interval, organic matter was as efficiently oxidized during weathering as it is now. From these observations, we constrain minimum atmospheric oxygen levels to between 2 to 24% of present levels from the late Paleoproterozoic Era into the Neoproterozoic Era. Indeed, our results reveal that eukaryote evolution, including early animal evolution, was not likely hindered by oxygen through this time interval. Our results also show that due to efficient organic recycling during weathering, carbon cycle dynamics can be assessed directly from the sediment carbon record.


Assuntos
Atmosfera/química , Carbono/química , Fósseis , Oxigênio/química , Ciclo do Carbono , Ecossistema , História Antiga
5.
Geobiology ; 17(3): 225-246, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30839152

RESUMO

The Mesoproterozoic Era (1,600-1,000 million years ago, Ma) geochemical record is sparse, but, nevertheless, critical in untangling relationships between the evolution of eukaryotic ecosystems and the evolution of Earth-surface chemistry. The ca. 1,400 Ma Xiamaling Formation has experienced only very low-grade thermal maturity and has emerged as a promising geochemical archive informing on the interplay between climate, ecosystem organization, and the chemistry of the atmosphere and oceans. Indeed, the geochemical record of portions of the Xiamaling Formation has been used to place minimum constraints on concentrations of atmospheric oxygen as well as possible influences of climate and climate change on water chemistry and sedimentation dynamics. A recent study has argued, however, that some portions of the Xiamaling Formation deposited in a highly restricted environment with only limited value as a geochemical archive. In this contribution, we fully explore these arguments as well as the underlying assumptions surrounding the use of many proxies used for paleo-environmental reconstructions. In doing so, we pay particular attention to deep-water oxygen-minimum zone environments and show that these generate unique geochemical signals that have been underappreciated. These signals, however, are compatible with the geochemical record of those parts of the Xiamaling Formation interpreted as most restricted. Overall, we conclude that the Xiamaling Formation was most likely open to the global ocean throughout its depositional history. More broadly, we show that proper paleo-environmental reconstructions require an understanding of the biogeochemical signals generated in all relevant modern analogue depositional environments. We also evaluate new data on the δ98 Mo of Xiamaling Formation shales, revealing possible unknown pathways of molybdenum sequestration into sediments and concluding, finally, that seawater at that time likely had a δ98 Mo value of about 1.1‰.


Assuntos
Planeta Terra , Meio Ambiente , Sedimentos Geológicos/análise , Água do Mar/química , Molibdênio/análise , Oceanos e Mares , Paleontologia
6.
Sci Rep ; 8(1): 13324, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190572

RESUMO

The Xiamaling Formation in the North China Block contains a well-preserved 1400 Ma sedimentary sequence with a low degree of thermal maturity. Previous studies have confirmed the dynamic and complex nature of this evolving marine setting, including the existence of an oxygen-minimum zone, using multi-proxy approaches, including iron speciation, trace metal dynamics, and organic geochemistry. Here, we investigate the prevailing redox conditions during diagenesis via the biomarkers of rearranged hopanes from the finely laminated sediments of the organic-rich black shales in Units 2 and 3 of the Xiamaling Formation. We find that rearranged hopanes are prominent in the biomarker composition of the oxygen-minimum zone sediment, which is completely different from that of the sediment in the overlying anoxic strata. Since the transition process from hopanes to rearranged hopanes requires oxygen via oxidation at the C-l6 alkyl position of 17α(H)-hopanes, we infer that dissolved oxygen led to the transformation of hopane precursors into rearranged hopanes during the early stages of diagenesis. The use of hopanoid hydrocarbons as biomarkers of marine redox conditions has rarely been previously reported, and the hydrocarbon signatures point towards oxic bottom waters during the deposition of Unit 3 of the Xiamaling Formation, which is consistent with the earlier oxygen-minimum zone environmental interpretation of this Unit.


Assuntos
Sedimentos Geológicos/química , Oligoelementos/química , China , Paleontologia , Água do Mar/química
7.
Nat Commun ; 9(1): 2871, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030422

RESUMO

The history of atmospheric oxygen through the Mesoproterozoic Era is uncertain, but may have played a role in the timing of major evolutionary developments among eukaryotes. Previous work using chromium isotopes in sedimentary rocks has suggested that Mesoproterozoic Era atmospheric oxygen levels were too  low in concentration (<0.1% of present-day levels (PAL)) for the expansion of eukaryotic algae and for the evolution of crown-group animals that occurred later in the Neoproterozoic Era. In contrast, our new results on chromium isotopes from Mesoproterozoic-aged sedimentary rocks from the Shennongjia Group from South China is consistent with atmospheric oxygen concentrations of >1% PAL and thus the possibility that a permissive environment existed long before the expansion of various eukaryotic clades.


Assuntos
Isótopos do Cromo/química , Células Eucarióticas/metabolismo , Fósseis , Sedimentos Geológicos , Oxigênio/análise , Oligoelementos/análise , Atmosfera , Evolução Biológica , China , Cromo , Geografia , Minerais
8.
Proc Natl Acad Sci U S A ; 115(17): E3895-E3904, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632173

RESUMO

We describe a 1,400 million-year old (Ma) iron formation (IF) from the Xiamaling Formation of the North China Craton. We estimate this IF to have contained at least 520 gigatons of authigenic Fe, comparable in size to many IFs of the Paleoproterozoic Era (2,500-1,600 Ma). Therefore, substantial IFs formed in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent. The Xiamaling IF is of exceptionally low thermal maturity, allowing the preservation of organic biomarkers and an unprecedented view of iron-cycle dynamics during IF emplacement. We identify tetramethyl aryl isoprenoid (TMAI) biomarkers linked to anoxygenic photosynthetic bacteria and thus phototrophic Fe oxidation. Although we cannot rule out other pathways of Fe oxidation, iron and organic matter likely deposited to the sediment in a ratio similar to that expected for anoxygenic photosynthesis. Fe reduction was likely a dominant and efficient pathway of organic matter mineralization, as indicated by organic matter maturation by Rock Eval pyrolysis combined with carbon isotope analyses: Indeed, Fe reduction was seemingly as efficient as oxic respiration. Overall, this Mesoproterozoic-aged IF shows many similarities to Archean-aged (>2,500 Ma) banded IFs (BIFs), but with an exceptional state of preservation, allowing an unprecedented exploration of Fe-cycle dynamics in IF deposition.

10.
Proc Natl Acad Sci U S A ; 113(7): 1731-6, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26729865

RESUMO

The Mesoproterozoic Eon [1,600-1,000 million years ago (Ma)] is emerging as a key interval in Earth history, with a unique geochemical history that might have influenced the course of biological evolution on Earth. Indeed, although this time interval is rather poorly understood, recent chromium isotope results suggest that atmospheric oxygen levels were <0.1% of present levels, sufficiently low to have inhibited the evolution of animal life. In contrast, using a different approach, we explore the distribution and enrichments of redox-sensitive trace metals in the 1,400 Ma sediments of Unit 3 of the Xiamaling Formation, North China Block. Patterns of trace metal enrichments reveal oxygenated bottom waters during deposition of the sediments, and biomarker results demonstrate the presence of green sulfur bacteria in the water column. Thus, we document an ancient oxygen minimum zone. We develop a simple, yet comprehensive, model of marine carbon-oxygen cycle dynamics to show that our geochemical results are consistent with atmospheric oxygen levels >4% of present-day levels. Therefore, in contrast to previous suggestions, we show that there was sufficient oxygen to fuel animal respiration long before the evolution of animals themselves.


Assuntos
Oxigênio/análise , Respiração , Animais , Atmosfera , Evolução Biológica , Água/química
11.
Analyst ; 140(13): 4694-701, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25945366

RESUMO

The comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) has been used to characterize a crude oil and a source rock extract sample. During the process, a series of pairwise components between monocyclic alkanes and mono-aromatics have been discovered. After tentative assignments of decahydronaphthalene isomers, a series of alkyl decalin isomers have been synthesized and used for identification and validation of these petroleum compounds. From both the MS and chromatography information, these pairwise compounds were identified as 2-alkyl-decahydronaphthalenes and 1-alkyl-decahydronaphthalenes. The polarity of 1-alkyl-decahydronaphthalenes was stronger. Their long chain alkyl substituent groups may be due to bacterial transformation or different oil cracking events. This systematic profiling of alkyl-decahydronaphthalene isomers provides further understanding and recognition of these potential petroleum biomarkers.


Assuntos
Alcanos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Naftalenos/análise , Naftalenos/química , Petróleo/análise , Isomerismo
12.
J Chromatogr A ; 1398: 94-107, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25939738

RESUMO

The aromatic hydrocarbon fractions of five crude oils representing a natural sequence of increasing degree of biodegradation from the Liaohe Basin, NE, China, were analyzed using conventional gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography (GC×GC). Because of the limited peak capability and low resolution, compounds in the aromatic fraction of a heavily biodegraded crude oil that were analyzed by GC-MS appeared as unresolved complex mixtures (UCMs) or GC "humps". They could be separated based on their polarity by GC×GC. UCMs are composed mainly of aromatic biomarkers and aromatic hydrocarbons with branched alkanes or cycloalkanes substituents. The quantitative results achieved by GC×GC-FID were shown that monoaromatic hydrocarbons account for the largest number and mass of UCMs in the aromatic hydrocarbon fraction of heavily biodegraded crude oil, at 45% by mass. The number and mass of diaromatic hydrocarbons ranks second at 33% by mass, followed by the aromatic biomarker compounds, triaromatic, tetraaromatic, and pentaaromatic hydrocarbons, that account for 10%, 6%, 1.5%, and 0.01% of all aromatic compounds by mass, respectively. In the heavily biodegraded oil, compounds with monocyclic cycloalkane substituents account for the largest proportion of mono- and diaromatic hydrocarbons, respectively. The C4-substituted compounds account for the largest proportion of naphthalenes and the C3-substituted compounds account for the largest proportion of phenanthrenes, which is very different from non-biodegraded, slightly biodegraded, and moderately biodegraded crude oil. It is inferred that compounds of monoaromatic, diaromatic and triaromatic hydrocarbons are affected by biodegradation, that compounds with C1-, C2-substituents are affected by the increase in degree of biodegradation, and that their relative content decreased, whereas compounds with C3-substituents or more were affected slightly or unaffected, and their relative content also increased. The varying regularity of relative content of substituted compounds may be used to reflect the degree of degradation of heavy oil. Moreover, biomarkers for the aromatic hydrocarbons of heavily biodegraded crude oil are mainly aromatic steranes, aromatic secohopanes, aromatic pentacyclotriterpanes, and benzohopanes. According to resultant data, aromatic secohopanes could be used as a specific marker because of their relatively high concentration. This aromatic compound analysis of a series of biodegraded crude oil is useful for future research on the quantitative characterization of the degree of biodegradation of heavy oil, unconventional oil maturity evaluation, oil source correlation, depositional environment, and any other geochemical problems.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Aromáticos/análise , Petróleo/análise , Alcanos/análise , Biodegradação Ambiental , China , Naftalenos/análise , Fenantrenos/análise
13.
Proc Natl Acad Sci U S A ; 112(12): E1406-13, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775605

RESUMO

Fluctuating climate is a hallmark of Earth. As one transcends deep into Earth time, however, both the evidence for and the causes of climate change become difficult to establish. We report geochemical and sedimentological evidence for repeated, short-term climate fluctuations from the exceptionally well-preserved ∼1.4-billion-year-old Xiamaling Formation of the North China Craton. We observe two patterns of climate fluctuations: On long time scales, over what amounts to tens of millions of years, sediments of the Xiamaling Formation record changes in geochemistry consistent with long-term changes in the location of the Xiamaling relative to the position of the Intertropical Convergence Zone. On shorter time scales, and within a precisely calibrated stratigraphic framework, cyclicity in sediment geochemical dynamics is consistent with orbital control. In particular, sediment geochemical fluctuations reflect what appear to be orbitally forced changes in wind patterns and ocean circulation as they influenced rates of organic carbon flux, trace metal accumulation, and the source of detrital particles to the sediment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...