Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5701-5706, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114166

RESUMO

The application of new-generation information technologies such as big data, the internet of things(IoT), and cloud computing in the traditional Chinese medicine(TCM)manufacturing industry is gradually deepening, driving the intelligent transformation and upgrading of the TCM industry. At the current stage, there are challenges in understanding the extraction process and its mechanisms in TCM. Online detection technology faces difficulties in making breakthroughs, and data throughout the entire production process is scattered, lacking valuable mining and utilization, which significantly hinders the intelligent upgrading of the TCM industry. Applying data-driven technologies in the process of TCM extraction can enhance the understanding of the extraction process, achieve precise control, and effectively improve the quality of TCM products. This article analyzed the technological bottlenecks in the production process of TCM extraction, summarized commonly used data-driven algorithms in the research and production control of extraction processes, and reviewed the progress in the application of data-driven technologies in the following five aspects: mechanism analysis of the extraction process, process development and optimization, online detection, process control, and production management. This article is expected to provide references for optimizing the extraction process and intelligent production of TCM.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Controle de Qualidade , Big Data , Algoritmos
2.
Zhongguo Zhong Yao Za Zhi ; 48(1): 22-29, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725254

RESUMO

Owing to the advancement in pharmaceutical technology, traditional Chinese medicine industry has seen rapid development. Preferring conventional manufacturing mode, pharmaceutical enterprises of traditional Chinese medicine have no effective process detection tools and process control methods. As a result, the quality of the final products mainly depends on testing and the quality is inconsistent in the same batch. Process analytical technology(PAT) for traditional Chinese medicine manufacturing, as one of the key advanced manufacturing techniques, can break through the bottleneck in quality control of medicine manufacturing, thus improving the production efficiency and product quality and reducing the material and energy consumption. It is applicable to the process control and real-time release of advanced manufacturing modes such as intelligent manufacturing and continuous manufacturing. This paper summarized the general idea of PAT for traditional Chinese medicine manufacturing. Through the analysis of the characteristics and status quo of the technology, we summed up the methodology for the continuous application and improvement of PAT during the whole life-cycle of traditional Chinese medicine. The five key procedures(process understanding, process detection, process modeling, process control, and continuous improvement) were summarized, and the application was reviewed. Finally, we proposed suggestions for the technical and regulatory challenges in implementing PAT in traditional Chinese medicine industry. This paper aims to provide a reference for development and application of PAT in advanced manufacturing, intelligent manufacturing, and continuous manufacturing of traditional Chinese medicine industry.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Tecnologia Farmacêutica , Indústria Farmacêutica , Controle de Qualidade
3.
J Anal Methods Chem ; 2022: 7611501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161105

RESUMO

Pyrrolizidine alkaloids (PAs) constitute a class of phytotoxin which demonstrates strong hepatotoxicity. In China, many plants containing PAs are used as traditional medicines or medicinal preparations, which could harm human health and safety. Xiaoyao Tablet (XYT) is an antidepressant drug registered in the European Union (EU), Compound Danshen Dropping Pills (CDDP) is a commonly used drug for coronary heart disease, and phase III clinical study is ongoing in the United States. The purpose of this study is to provide data to support the use of Chinese medicine preparations internationally and to establish analytical methods for 32 PAs in XYT and CDDP. The extraction parameters that were optimized include solid-phase extraction (SPE) cartridge, extraction method, and extraction solvent. Then ultra-performance liquid chromatography coupled with triple-quadrupole linear ion-traptandem mass spectrometry (UPLC-MS/MS) was developed to effectively and efficiently quantify the 32 PAs of the XYT and CDDP. The analytical methods for XYT and CDDP were verified respectively. For XYT, the analytical method for 32 PAs was linear, and the correlation coefficient r was greater than 0.994; the recovery (REC%) at 10-2000 µg/kg was 73.3%-118.5%, and the relative standard deviation (RSD%) was 2.1%-15.4%. The CDDP REC% was 71.8%-112.0%, and the RSD% was 2.0%-17.1%. This study provides technical and data support for the registration of Chinese patented medicines in the EU, controls quality and ensures safety, and is committed to the internationalization and standardization of Chinese patented medicines.

4.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3806-3815, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850838

RESUMO

To realize the real-time monitoring of the production process of Yangxue Qingnao Granules and improve the inter-batch consistency of granule quality in the granulation process, this study established a near-infrared quantitative prediction model of moisture, particle size, bulk density, and angle of repose in the fluidized bed granulation process of Yangxue Qingnao Granules based on near-infrared spectroscopy(NIRS). The near-infrared spectra were collected from 355 samples in 12 batches in the granulation process by integrating the sphere detection module of the near-infrared spectrometer. In combination with the pretreatment methods such as the first derivative, multiplicative scatter correction(MSC), and standard normal variate(SNV), the model was established by partial least squares(PLS) regression. The root mean square error of prediction(RMSEP) of moisture was 0.347 and R_P~2 was 0.935. The RMSEP of the D_(50) particle size model was 38.4 and R_P~2 was 0.980. The RMSEPs of bulk density and angle of repose were 0.018 8 and 0.879, with R_P~2 of 0.085 9 and 0.958. The results showed that the prediction of the PLS quantitative model combined with NIRS was accurate, and this model can be applied to the monitoring of key quality attributes in the fluidized bed granulation of Chinese medicinal granules in the production scale.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Análise dos Mínimos Quadrados , Tamanho da Partícula , Espectroscopia de Luz Próxima ao Infravermelho/métodos
5.
Pharmazie ; 77(3): 125-130, 2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35459442

RESUMO

Mental health disorders such as stress, anxiety, depression and insomnia caused by COVID-19 have attracted worldwide attention. Traditional Chinese medicines (TCMs) have been proven to be a safe and effective option for treating mental health disorders. Recently, after assessing its efficacy and safety fully, the Netherlands Medicines Evaluation Board approved XiaoYao Tablets as a traditional herbal medicinal product (THMP), indicated for an alternative self-care for patients in Europe to relieve the symptoms of mental stress and exhaustion. Despite the fact that TCMs have gradually become one of the therapeutic choices worldwide, to-date, only a few TCMs have been successfully registered in the European Union (EU) as THMPs, and XiaoYao Tablets is the first successfully registered combination TCM from China. In this article, traditional use efficacy and clinical safety of XiaoYao Tablets in the treatment of mental health disorders were summarized and analyzed from the perspective of traditional use registration (TUR). Additionally a safety evolution pathway of combination TCMs was established. This article will not only seek to enhance our understanding about traditional use efficacy and clinical safety of XiaoYao Tablets, but also summarize the experience of XiaoYao Tablets as the first successfully registered combination TCM from China, which could serve as role model for the others to overcome registration difficulties in the EU.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/efeitos adversos , Humanos , Medicina Tradicional Chinesa , Comprimidos
6.
Zhongguo Zhong Yao Za Zhi ; 46(11): 2816-2823, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34296580

RESUMO

The mixing process is one of the key operation units for solid preparation of traditional Chinese medicine. The physical properties such as particle size, density and viscosity of the mixture are key factors that need to be controlled, which will directly affect the performance of the preparation molding process and product quality. Subsequent dripping process performance and appearance qua-lity of dripping pills will be affected by dynamic viscosity of materials in the mixing process. Based on this, with mixing process of compound Danshen dripping pills as the object, a feedforward control method for the dripping pill mixing process was established based on the concept of quality by design(QbD). Firstly, critical quality attribute(CQA)-dynamic viscosity, critical material attributes(CMAs)-the moisture content of compound Danshen extract, average molecular weight of polyethylene glycol 6000 and critical process parameter(CPP)-mixing temperature were identified through the analysis of properties for multiple batches of the raw materials and excipients as well as technological mechanism. Then the Box-Behnken experimental design was used to establish the regression model among CMA, CPP and CMA(R■=0.972 0, RMSE =16.24) to obtain the design space. Finally, through the verification of three batches within the design space, the mixing process temperature was adjusted according to the properties of the raw materials and exci-pients to achieve accurate control of the dynamic viscosity attribute. The relative deviation between the actual dynamic viscosity value and the target value was less than 3.0 %. The feedforward control of the mixing process of compound Danshen dripping pills was rea-lized in this study, which can contribute to improving quality consistency of the mixing process intermediates, simultaneously provide a reference for the research on the process quality control of other Chinese medicine dripping pills.


Assuntos
Medicamentos de Ervas Chinesas , Projetos de Pesquisa , Canfanos , Medicina Tradicional Chinesa , Panax notoginseng , Controle de Qualidade , Salvia miltiorrhiza
7.
Phytochem Anal ; 32(6): 942-956, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33660329

RESUMO

INTRODUCTION: Charged aerosol detection (CAD) has the merits of high sensitivity, high universality and response uniformity. The strategy that combines the quantitative analysis of multi-components by single marker (QAMS) with CAD has certain advantages for the quantification of multi-components. However, relevant research was limited. OBJECTIVES: To comprehensively investigate the crucial factors that affect the performance of the HPLC-CAD-QAMS approach and validate the credibility and feasibility of the method. METHODOLOGY: Multiple components of Qishen Yiqi dripping pills (QSYQ) were assayed using the high-performance liquid chromatography (HPLC)-CAD-QAMS approach. Some factors that affect the sensitivity and accuracy of the approach were sufficiently studied. After the method verification, principal component analysis (PCA) was applied to evaluate the quality consistency of three types of samples: normal samples, expired samples and negative samples. RESULTS: A HPLC-CAD-QAMS method was successfully developed for the multi-component determination of QSYQ. First, chromatographic conditions were optimised by a definitive screening design, and the optimised ranges of operating parameters were obtained with a Monte Carlo simulation method. Next, a new method to select the internal reference standards was successfully introduced based on the heatmap of Pearson correlation coefficients of the response factors. Then, the multi-point method was selected to calculate the relative correction factors, and a robustness test was conducted with Plackett-Burman design. Finally, the PCA was proved to be effective for the quality consistency evaluation of different samples. CONCLUSION: The developed HPLC-CAD-QAMS method can be a reliable and superior means for the multi-component quantitative analysis of QSYQ.


Assuntos
Medicamentos de Ervas Chinesas , Aerossóis , Cromatografia Líquida de Alta Pressão , Controle de Qualidade
8.
Zhongguo Zhong Yao Za Zhi ; 45(7): 1698-1706, 2020 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-32489052

RESUMO

China healthcare industry has gradually developed the consumer-centric integrated service model. To satisfy consumers' increasing demands on pluralistic, personalized and transparent healthcare services, pharmaceutical manufacturing enterprises must provide high-quality, precise and flexible medicines. This can be achieved by accelerating implementation of intelligent manufacturing, which is the core competitiveness of pharmaceutical manufacturing enterprises. According to the authors' intelligent manufacturing projects in a traditional Chinese medicine(TCM) factory, study and industrial practice on intelligent manufacturing were presented in this paper. First, the quality digitalization-based intelligent manufacturing methodology of TCM was proposed in this paper. The methodology mainly included three digitalized technologies in process and quality design, manufacturing process control and product batch evaluation. Next, the architectural design of intelligent manufacturing systems in one TCM factory was introduced, and the functional modules and data transmission relationships covering seedling, cultivation, herbal slices, preparation, storage and quality management systems were described. Finally, these technologies were fully used, and an integrated quality digitalization system was successfully established in the production workshop of a TCM product Compound Danshen Dripping Pills. The actual operation and application of process analyzers, supervisory control and data acquisition(SCADA), manufacturing execution system(MES), data analysis system, and enterprise resource planning system(ERP) were introduced. This paper provides reference for technical path planning and systematic architecture of TCM intelligent manufacturing.


Assuntos
Medicina Tradicional Chinesa , Canfanos , China , Medicamentos de Ervas Chinesas , Panax notoginseng , Controle de Qualidade , Salvia miltiorrhiza
9.
J Pharm Biomed Anal ; 174: 674-682, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288190

RESUMO

Near-infrared (NIR) spectroscopy is one of the most successful pharmaceutical process analytical tools. For botanical drug products (BDPs), many studies have applied NIR spectroscopy for rapid analysis of botanical raw materials, extracts and formulations. However, the real-time process analysis reported for BDPs was still mainly conducted on lab- or pilot- scale equipment, where some essential conditions of the materials and process parameters can be easily controlled for NIR spectral measurement. Due to the chemical and physical characteristics of the commercial production of BDPs, it is challenging to develop in-line NIR methods with enough robustness for industrial-scale application. This is the first reported case study of the development and validation of the in-line NIR method for the commercial production of BDPs, taking Compound Danshen Dripping Pill (CDDP) as an example. An in-line NIR method was developed for simultaneous measurement of the three critical quality attributes, i.e. the relative density, the moisture content and the content of 3,4-dihydroxyphenyl lactic acid (danshensu, a key active compound), during the extract concentration process. The NIR spectra and sample collection lasted for three years (67 production batches) to cover the variability of raw materials and process conditions. NIR calibration models were established respectively, with determination coefficients (r2) of 0.9905, root mean square errors of prediction (RMSEP) of 0.004 for the relative density in the range of 1.042-1.184; r2 of 0.9870, RMSEP of 1.1% for the moisture content in the range of 50.8-83.0%; r2 of 0.9870, RMSEP of 0.461 mg/g for danshensu in the range of 2.563-8.869 mg/g. Then, all the method validation parameters (accuracy, precision, range, specificity, linearity, robustness, detection and quantitation limits) were discussed according to the characteristics of the commercial production of BDPs. The NIR method development and validation strategy proposed may also be applied in the future for the commercial production of other BDPs.


Assuntos
Química Farmacêutica/métodos , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/farmacologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Algoritmos , Calibragem , Composição de Medicamentos , Lactatos/análise , Lactatos/farmacologia , Análise dos Mínimos Quadrados , Modelos Lineares , Teste de Materiais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Zhongguo Zhong Yao Za Zhi ; 41(10): 1823-1834, 2016 May.
Artigo em Chinês | MEDLINE | ID: mdl-28895328

RESUMO

This study, based on the findings for Perilla resources, aimed to describe the species, distribution, importance, features, utilization and status of quantitative Perilla resources in China. This not only helps people to know well about the existing resources and researching development, but also indicates the overall distribution, selection and rational use of Perilla resource in the future. According to the output types, Perilla resources are divided into two categories: wild resources and cultivated resources; and based on its common uses, the cultivated resources are further divided into medicine resources, seed-used resources and export resources. The distribution areas of wild resources include Henan, Sichuan, Anhui, Jiangxi, Guangxi, Hunan, Jiangsu and Zhejiang. The distribution areas of medicine resources are concentrated in Hebei, Anhui, Chongqing, Guangxi and Guangdong. Seed-used resources are mainly distributed in Gansu, Heilongjiang, Jilin, Chongqing and Yunnan. Export resource areas are mainly concentrated in coastal cities, such as Zhejiang, Jiangsu, Shandong and Zhejiang. For the further study, the essential oil of leaf samples from different areas were extracted by the steam distillation method and analyzed by GC-MS. The differences in essential oil chemotypes among different Perilla leaves were compared by analyzing their chemical constituents. The main 31 constituents of all samples included: perillaketone (0.93%-96.55%), perillaldehyde (0.10%-61.24%), perillene (52.15%), caryophyllene (3.22%-26.67%), and α-farnesene (2.10%-21.54%). These samples can be classified into following five chemotypes based on the synthesis pathways: PK-type, PA-type, PL-type, PP-type and EK-type. The chemotypes of wild resources included PK-type and PA-type, with PK-type as the majority. All of the five chemotypes are included in cultivated resources, with PA-type as the majority. Seed-used resources are all PK-type, and export resources are all PA-type. The P. frutescens var. frutescens include five chemotypes, with PK-type as the majority. The PK-type leaves of P. frutescens var. acuta are green, while the PA-type leaves are reddish purple. The P. fruteseens var. crispa was mainly PA type with reddish purple leaves. The differences of the main chemotypes provide a scientific basis for distinguishing between Zisu and Baisu in previous literatures. Based on the lung toxicity of PK and the traditional use of Perilla, the testing standard of essential oil and Perilla herb shall be built, and PA type is recommended to be used in traditional Chinese medicine.


Assuntos
Óleos Voláteis/química , Perilla frutescens/química , China , Perilla frutescens/classificação , Folhas de Planta/química , Plantas Medicinais/química , Plantas Medicinais/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...