Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.425
Filtrar
1.
Neuropsychiatr Dis Treat ; 20: 1201-1210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860214

RESUMO

Background: Late-life depression (LLD) is characterized by disrupted brain networks. Resting-state networks in the brain are composed of both stable and transient topological structures known as microstates, which reflect the dynamics of the neural activities. However, the specific pattern of EEG microstate in LLD remains unclear. Methods: Resting-state EEG were recorded for 31 patients with episodic LLD (eLLD), 20 patients with remitted LLD (rLLD) and 32 healthy controls (HCs) using a 64-channel cap. The clinical data of the patients were collected and the 17-Item Hamilton Rating Scale for Depression (HAMD) was used for symptom assessment. Duration, occurrence, time coverage and syntax of the four microstate classes (A-D) were calculated. Group differences in EEG microstates and the relationship between microstates parameters and clinical features were analyzed. Results: Compared with NC and patients with rLLD, patients with eLLD showed increased duration and time coverage of microstate class D. Besides, a decrease in occurrence of microstate C and transition probability between microstate B and C was observed. In addition, the time coverage of microstate D was positively correlated with the total score of HAMD, core symptoms, and miscellaneous items. Conclusion: These findings suggest that disrupted EEG microstates may be associated with the pathophysiology of LLD and may serve as potential state markers for the monitoring of the disease.

2.
Am J Hypertens ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850192

RESUMO

BACKGROUND: Salt-sensitive hypertension is often more prone to induce damage to target organs such as the heart and kidneys. Abundant recent studies have demonstrated a close association between ferroptosis and cardiovascular diseases.Therefore, we hypothesize that ferroptosis may be closely associated with organ damage in salt-sensitive hypertension. This study aimed to investigate whether ferroptosis is involved in the occurrence and development of myocardial fibrosis and renal fibrosis in salt-sensitive hypertensive rats. METHODS: Ten 7-week-old male Dahl salt-sensitive (Dahl-SS) rats were adaptively fed for 1 week, then randomly divided into two groups and fed either a normal diet (0.3% NaCl, NDS group) or a high-salt diet (8% NaCl, HDS group) for 8 weeks. Blood pressure of the rats was observed, and analysis of the hearts and kidneys of Dahl-SS rats was conducted via HE-staining, Masson-staining, Prussian-blue-staining, TEM, tissue iron content detection, MDA content detection, immunofluorescence, and Western blot. RESULTS: Compared to the NDS group, rats in the HDS group increases in systolic blood pressure(SBP) and diastolic blood pressure(DBP)(P<0.05);collagen fiber accumulation was observed in the heart and kidney tissues (P<0.01), accompanied by alterations in mitochondrial ultrastructure,reduced mitochondrial volume, and increased density of the mitochondrial double membrane. Additionally,there were significant increases in both iron content and MDA levels(P<0.05). Immunofluorescence and Western blot results both indicated significant downregulation (P<0.05) of xCT and GPX4 proteins associated with ferroptosis in the HDS group. CONCLUSION: Ferroptosis is involved in the damage and fibrosis of the heart and kidney tissues in salt-sensitive hypertensive rats.

3.
Adv Mater ; : e2405682, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877752

RESUMO

Assembling ultrathin nanosheets into layered structure represents one promising way to fabricate high-performance nanocomposites. However, how to minimize the internal defects of the layered assemblies to fully exploit the intrinsic mechanical superiority of nanosheets remains challenging. Here, we develop a dual-scale spatially confined strategy for the co-assembly of ultrathin nanosheets with different aspect ratios into a near-perfect layered structure. Large-aspect-ratio (LAR) nanosheets are aligned due to the microscale confined space of a flat microfluidic channel, small-aspect-ratio (SAR) nanosheets are aligned due to the nanoscale confined space between adjacent LAR nanosheets. During this co-assembly process, SAR nanosheets can flatten LAR nanosheets, thus reducing wrinkles and pores of the assemblies. Benefiting from the precise alignment (orientation degree of 90.74%) of different-sized nanosheets, efficient stress transfer between nanosheets and interlayer matrix is achieved, resulting in layered nanocomposites with multiscale mechanical enhancement and superior fatigue durability (100,000 bending cycles). The proposed co-assembly strategy can be used to orderly integrate high-quality nanosheets with different sizes or diverse functions towards high-performance or multifunctional nanocomposites. This article is protected by copyright. All rights reserved.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38830230

RESUMO

Sterile alpha motif and histidine-aspartic acid domain containing protein-1 (SAMHD1) is a deoxynucleoside triphosphate (dNTP) hydrolase that controls dNTP pools and detoxifies cancer cells of chemotherapy metabolites. TH6342 is a recently reported small molecule inhibitor of SAMHD1 that interacts with the protein in vitro and non-competitively prevents dimerisation, a prerequisite for catalysis. The binding site of TH6342 on SAMHD1 is currently unknown. In the present study we demonstrate that the N-terminal SAM domain of SAMHD1 is not required for inhibition by TH6342.

5.
Environ Technol ; : 1-14, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770638

RESUMO

SiO2-coated nano zero-valent iron (nZVI) has emerged as a fine material for the treatment of dye wastewater due to its large specific surface area, high surface activity, and strong reducibility. However, the magnetic properties based on which SiO2-coated nZVI (SiO2-nZVI) could effectively separate and recover from treated wastewater, and the biotoxicity analysis of degradation products of the dye wastewater treated by SiO2-nZVI remain unclear. In this study, SiO2-nZVI was synthesized using a modified one-step synthesis method. The SiO2-nZVI nanoparticles were characterized using Transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, Fully automatic specific surface and porosity analyzer, Vibrating sample magnetometer, and Zeta potential analyzer. The removal rate of methyl orange (MO) by SiO2-nZVI composite reached 98.35% when the degradation performance of SiO2-nZVI treating MO was optimized. Since SiO2-nZVI analysed by magnetic hysteresis loops had large saturation magnetization and strong magnetic properties, SiO2-nZVI exhibited excellent ferromagnetic behaviour. The analysis of the degradation products showed that the MO treated by SiO2-nZVI was converted into a series of intermediates, resulting in reducing the toxicity of MO. The potential mechanism of MO degradated by SiO2-nZVI was speculated through degradation process and degradation kinetics analysis. Overall, the SiO2-nZVI composite may be regarded as a promising catalyst for decolorization of dye wastewater.

6.
JCI Insight ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771644

RESUMO

Hypotrichosis is a genetic disorder which characterized by a diffuse and progressive loss of scalp and/or body hair. Nonetheless, the causative genes for several affected individuals remain elusive, and the underlying mechanisms have yet to be fully elucidated. Here, we discovered a dominant variant in ADAM17 gene caused hypotrichosis with woolly hair. Adam17 (p.D647N) knock-in mice model mimicked the hair abnormality in patients. ADAM17 (p.D647N) mutation led to hair follicle stem cells (HFSCs) exhaustion and caused abnormal hair follicles, ultimately resulting in alopecia. Mechanistic studies revealed that ADAM17 binds directly to E3 ubiquitin ligase TRIM47. ADAM17 (p.D647N) variant enhanced the association between ADAM17 and TRIM47, leading to an increase in ubiquitination and subsequent degradation of ADAM17 protein. Furthermore, reduced ADAM17 protein expression affected Notch signaling pathway, impairing the activation, proliferation, and differentiation of HFSCs during hair follicle regeneration. Overexpression of NICD rescued the reduced proliferation ability caused by Adam17 variant in primary fibroblast cells.

7.
Int J Gen Med ; 17: 2299-2309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799198

RESUMO

Objective: This study aimed to explore specific biochemical indicators and construct a risk prediction model for diabetic kidney disease (DKD) in patients with type 2 diabetes (T2D). Methods: This study included 234 T2D patients, of whom 166 had DKD, at the First Hospital of Jilin University from January 2021 to July 2022. Clinical characteristics, such as age, gender, and typical hematological parameters, were collected and used for modeling. Five machine learning algorithms [Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), Support Vector Machine (SVM), Logistic Regression (LR), and Random Forest (RF)] were used to identify critical clinical and pathological features and to build a risk prediction model for DKD. Additionally, clinical data from 70 patients (nT2D = 20, nDKD = 50) were collected for external validation from the Third Hospital of Jilin University. Results: The RF algorithm demonstrated the best performance in predicting progression to DKD, identifying five major indicators: estimated glomerular filtration rate (eGFR), glycated albumin (GA), Uric acid, HbA1c, and Zinc (Zn). The prediction model showed sufficient predictive accuracy with area under the curve (AUC) values of 0.960 (95% CI: 0.936-0.984) and 0.9326 (95% CI: 0.8747-0.9885) in the internal validation set and external validation set, respectively. The diagnostic efficacy of the RF model (AUC = 0.960) was significantly higher than each of the five features screened with the highest feature importance in the RF model. Conclusion: The online DKD risk prediction model constructed using the RF algorithm was selected based on its strong performance in the internal validation.

8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167207, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701954

RESUMO

PURPOSE: In this study, we identified and diagnosed a novel inherited condition called Dyschromatosis, Ichthyosis, Deafness, and Atopic Disease (DIDA) syndrome. We present a series of studies to clarify the pathogenic variants and specific mechanism. METHODS: Exome sequencing and Sanger sequencing was conducted in affected and unaffected family members. A variety of human and cell studies were performed to explore the pathogenic process of keratosis. RESULTS: Our finding indicated that DIDA syndrome was caused by compound heterozygous variants in the oxysterol-binding protein-related protein 2 (OSBPL2) gene. Furthermore, our findings revealed a direct interaction between OSBPL2 and Phosphoinositide phospholipase C-beta-3 (PLCB3), a key player in hyperkeratosis. OSBPL2 effectively inhibits the ubiquitylation of PLCB3, thereby stabilizing PLCB3. Conversely, OSBPL2 variants lead to enhanced ubiquitination and subsequent degradation of PLCB3, leading to epidermal hyperkeratosis, characterized by aberrant proliferation and delayed terminal differentiation of keratinocytes. CONCLUSIONS: Our study not only unveiled the association between OSBPL2 variants and the newly identified DIDA syndrome but also shed light on the underlying mechanism.


Assuntos
Surdez , Ictiose , Linhagem , Fosfolipase C beta , Humanos , Surdez/genética , Surdez/patologia , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Feminino , Masculino , Ictiose/genética , Ictiose/patologia , Ictiose/metabolismo , Heterozigoto , Ubiquitinação , Queratinócitos/metabolismo , Queratinócitos/patologia , Sequenciamento do Exoma , Adulto , Síndrome , Células HEK293 , Receptores de Esteroides
9.
Front Psychiatry ; 15: 1362288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726381

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that encompasses a range of symptoms including difficulties in verbal communication, social interaction, limited interests, and repetitive behaviors. Neuroplasticity refers to the structural and functional changes that occur in the nervous system to adapt and respond to changes in the external environment. In simpler terms, it is the brain's ability to learn and adapt to new environments. However, individuals with ASD exhibit abnormal neuroplasticity, which impacts information processing, sensory processing, and social cognition, leading to the manifestation of corresponding symptoms. This paper aims to review the current research progress on ASD neuroplasticity, focusing on genetics, environment, neural pathways, neuroinflammation, and immunity. The findings will provide a theoretical foundation and insights for intervention and treatment in pediatric fields related to ASD.

10.
Front Immunol ; 15: 1395047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694500

RESUMO

The emergence of resistance to prostate cancer (PCa) treatment, particularly to androgen deprivation therapy (ADT), has posed a significant challenge in the field of PCa management. Among the therapeutic options for PCa, radiotherapy, chemotherapy, and hormone therapy are commonly used modalities. However, these therapeutic approaches, while inducing apoptosis in tumor cells, may also trigger stress-induced premature senescence (SIPS). Cellular senescence, an entropy-driven transition from an ordered to a disordered state, ultimately leading to cell growth arrest, exhibits a dual role in PCa treatment. On one hand, senescent tumor cells may withdraw from the cell cycle, thereby reducing tumor growth rate and exerting a positive effect on treatment. On the other hand, senescent tumor cells may secrete a plethora of cytokines, growth factors and proteases that can affect neighboring tumor cells, thereby exerting a negative impact on treatment. This review explores how radiotherapy, chemotherapy, and hormone therapy trigger SIPS and the nuanced impact of senescent tumor cells on PCa treatment. Additionally, we aim to identify novel therapeutic strategies to overcome resistance in PCa treatment, thereby enhancing patient outcomes.


Assuntos
Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata , Humanos , Senescência Celular/efeitos dos fármacos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/metabolismo , Animais
11.
J Foot Ankle Res ; 17(2): e12027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38812103

RESUMO

PURPOSE: Abnormal lower limb movement patterns have been observed during walking in individuals with limited ankle dorsiflexion. The purpose of this study was to investigate the relationships of peak ankle dorsiflexion angle during the stance phase of walking with the lower extremity biomechanics at the corresponding moment and to determine a cutoff value of functional limited ankle dorsiflexion during walking. METHODS: Kinematic and kinetic data of 70 healthy participants were measured during walking. Spearman's correlation coefficients were calculated to establish the association between peak ankle dorsiflexion and angle and moment of ankle, knee, and hip, ground reaction force, and pelvic movement at peak ankle dorsiflexion. All variables significantly related to peak ankle dorsiflexion were extracted as a common factor by factor analysis. Maximally selected Wilcoxon statistic was used to perform a cutoff value analysis. RESULTS: Peak ankle dorsiflexion positively correlated with ankle plantar flexion moment (r = 0.432; p = 0.001), ankle external rotation moment (r = 0.251; p = 0.036), hip extension angle (r = 0.281; p = 0.018), hip flexion moment (r = 0.341; p = 0.004), pelvic ipsilateral rotation angle (r = 0.284; p = 0.017), and medial, anterior, and vertical ground reaction force (r = 0.324; p = 0.006, r = 0.543; p = 0.001, r = 0.322; p = 0.007), negatively correlated with knee external rotation angle (r = -0.394; p = 0.001) and hip adduction angle (r = -0.256; p = 0.032). The cutoff baseline value for all 70 participants was 9.03°. CONCLUSIONS: There is a correlation between the peak ankle dorsiflexion angle and the lower extremity biomechanics during walking. If the peak ankle dorsiflexion angle is less than 9.03°, the lower limb movement pattern will change significantly.


Assuntos
Articulação do Tornozelo , Extremidade Inferior , Amplitude de Movimento Articular , Caminhada , Humanos , Fenômenos Biomecânicos/fisiologia , Masculino , Feminino , Articulação do Tornozelo/fisiologia , Caminhada/fisiologia , Amplitude de Movimento Articular/fisiologia , Adulto , Extremidade Inferior/fisiologia , Adulto Jovem , Articulação do Quadril/fisiologia , Articulação do Joelho/fisiologia , Tornozelo/fisiologia
13.
Zhen Ci Yan Jiu ; 49(5): 506-511, 2024 May 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38764122

RESUMO

OBJECTIVES: To observe the effect of scalp-abdominal acupuncture combined with donepezil hydrochloride on cognition and life ability of patients with Alzheimer's disease (AD), so as to evaluate its clinical efficacy. METHODS: Sixty AD patients were collected and randomly divided into control group (30 cases) and observation group (30 cases). Patients in the control group were treated with oral donepezil hydrochloride (5 mg, once daily). Patients in the observation group were treated with scalp-abdominal acupuncture at Baihui (GV20), Yintang (GV24+), Sishencong (EX-HN1), "emotional area", Shenting (GV24), "abdominal area 1""abdominal area 8", and bilateral Fengchi (GB20), Taixi (KI3), Xuanzhong (GB39), Zusanli (ST36) on the basis of control group, and electroacupuncture (10 Hz/50 Hz, 0.5 to 5.0 mA) was applied to EX-HN1, "emotional area""abdominal area 1" and "abdominal area 8", once daily, 30 min each time. Four weeks as a course of treatment, both the two groups were treated for two consecutive courses. Before and after treatment, the mini-mental state examination (MMSE), AD assessmennt scale-cognitive subscale (ADAS-Cog) and activity of daily living scale (ADL) were evaluated. The clinical efficacy index was calculated and safety was evaluated. RESULTS: After treatment, the MMSE and ADL scores were higher (P<0.05) and the ADAS-Cog score was lower (P<0.05) than those before treatment in both groups. Compared with the control group, the MMSE and ADL scores were increased (P<0.05) and ADAS-Cog score was decreased (P<0.05) in the observation group. The total effective rate of the observation group (26/30, 86.67%) was higher (P<0.05) than that of the control group (23/30, 76.67%). No adverse reactions occurred in both groups during the treatment. CONCLUSIONS: Scalp-abdominal acupuncture combined with donepezil hydrochloride can effectively improve the cognitive ability and daily living ability of AD patients, and the efficacy is better than that of oral donepezil hydrochloride alone.


Assuntos
Pontos de Acupuntura , Terapia por Acupuntura , Doença de Alzheimer , Donepezila , Couro Cabeludo , Humanos , Donepezila/uso terapêutico , Doença de Alzheimer/terapia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Feminino , Masculino , Idoso , Abdome , Pessoa de Meia-Idade , Cognição/efeitos dos fármacos , Resultado do Tratamento , Piperidinas/uso terapêutico , Terapia Combinada , Idoso de 80 Anos ou mais , Indanos/uso terapêutico
14.
J Chromatogr A ; 1726: 464975, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38735118

RESUMO

In conventional chromatographic ligand screening, underperforming ligands are often dismissed. However, this practice may inadvertently overlook potential opportunities. This study aims to investigate whether these underperforming ligands can be repurposed as valuable assets. Hydrophobic charge-induction chromatography (HCIC) is chosen as the validation target for its potential as an innovative chromatographic mode. A novel dual-ligand approach is employed, combining two suboptimal ligands (5-Aminobenzimidazole and Tryptamine) to explore enhanced performance and optimization prospects. Various dual-ligand HCIC resins with different ligand densities were synthesized by adjusting the ligand ratio and concentration. The resins were characterized to assess appearance, functional groups, and pore features using SEM, FTIR, and ISEC techniques. Performance assessments were conducted using single-ligand mode resins as controls, evaluating the selectivity against human immunoglobulin G and human serum albumin. Static adsorption experiments were performed to understand pH and salt influence on adsorption. Breakthrough experiments were conducted to assess dynamic adsorption capacity of the novel resin. Finally, chromatographic separation using human serum was performed to evaluate the purity and yield of the resin. Results indicated that the dual-ligand HCIC resin designed for human antibodies demonstrates exceptional selectivity, surpassing not only single ligand states but also outperforming certain high-performing ligand types, particularly under specific salt and pH conditions. Ultimately, a high yield of 83.9 % and purity of 96.7 % were achieved in the separation of hIgG from human serum with the dual-ligand HCIC, significantly superior to the single-ligand resins. In conclusion, through rational design and proper operational conditions, the dual-ligand mode can revitalize underutilized ligands, potentially introducing novel and promising chromatographic modes.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Imunoglobulina G , Ligantes , Humanos , Adsorção , Imunoglobulina G/química , Imunoglobulina G/sangue , Triptaminas/química , Cromatografia Líquida/métodos , Benzimidazóis/química , Concentração de Íons de Hidrogênio
15.
Int J Biol Macromol ; : 132485, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38821794

RESUMO

The study investigated the impacts of repeated (RDH) and continuous dry heat (CDH) treatments on the physicochemical, structural, and in vitro digestion properties of chickpea starch. The results of SEM and CLSM showed that more fissures and holes appeared on the surface of granules as the treated time of CDH and the circles of RDH increased, both of which made the starch sample much easier to break down by digestive enzymes. Moreover, the fissures and holes of starch granules treated by CDH were more obvious than those of RDH. The XRD and FT-IR results suggested that the crystal type remained C-type, and the relative crystallinity and R1047/1022 of the chickpea starch decreased after dry heat treatments. In addition, a marked decline in the pasting viscosity and gelatinization temperature of chickpea starches was found with dry heat treatments. Moreover, the increased enzyme accessibility of starch was fitted as suggested by the increased RDS content and digestion rate. This study provided basic data for the rational design of chickpea starch-based foods with nutritional functions.

16.
Biomed Environ Sci ; 37(3): 266-277, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582991

RESUMO

Objective: The purpose of this study was to investigate the bacterial communities of biting midges and ticks collected from three sites in the Poyang Lake area, namely, Qunlu Practice Base, Peach Blossom Garden, and Huangtong Animal Husbandry, and whether vectors carry any bacterial pathogens that may cause diseases to humans, to provide scientific basis for prospective pathogen discovery and disease prevention and control. Methods: Using a metataxonomics approach in concert with full-length 16S rRNA gene sequencing and operational phylogenetic unit (OPU) analysis, we characterized the species-level microbial community structure of two important vector species, biting midges and ticks, including 33 arthropod samples comprising 3,885 individuals, collected around Poyang Lake. Results: A total of 662 OPUs were classified in biting midges, including 195 known species and 373 potentially new species, and 618 OPUs were classified in ticks, including 217 known species and 326 potentially new species. Surprisingly, OPUs with potentially pathogenicity were detected in both arthropod vectors, with 66 known species of biting midges reported to carry potential pathogens, including Asaia lannensis and Rickettsia bellii, compared to 50 in ticks, such as Acinetobacter lwoffii and Staphylococcus sciuri. We found that Proteobacteria was the most dominant group in both midges and ticks. Furthermore, the outcomes demonstrated that the microbiota of midges and ticks tend to be governed by a few highly abundant bacteria. Pantoea sp7 was predominant in biting midges, while Coxiella sp1 was enriched in ticks. Meanwhile, Coxiella spp., which may be essential for the survival of Haemaphysalis longicornis Neumann, were detected in all tick samples. The identification of dominant species and pathogens of biting midges and ticks in this study serves to broaden our knowledge associated to microbes of arthropod vectors. Conclusion: Biting midges and ticks carry large numbers of known and potentially novel bacteria, and carry a wide range of potentially pathogenic bacteria, which may pose a risk of infection to humans and animals. The microbial communities of midges and ticks tend to be dominated by a few highly abundant bacteria.


Assuntos
Ceratopogonidae , Microbiota , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Ceratopogonidae/genética , Filogenia , RNA Ribossômico 16S/genética , Estudos Prospectivos , Coxiella/genética
17.
Cancer Cell Int ; 24(1): 131, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594722

RESUMO

Extensive exploration of the molecular subtypes of triple-negative breast cancer (TNBC) is critical for advancing precision medicine. Notably, the luminal androgen receptor (LAR) subtype has attracted attention for targeted treatment combining androgen receptor antagonists and CDK4/6 inhibitors. Unfortunately, this strategy has proven to be of limited efficacy, highlighting the need for further optimization. Using our center's comprehensive multiomics dataset (n = 465), we identified novel therapeutic targets and evaluated their efficacy through multiple models, including in vitro LAR cell lines, in vivo cell-derived allograft models and ex vivo patient-derived organoids. Moreover, we conducted flow cytometry and RNA-seq analysis to unveil potential mechanisms underlying the regulation of tumor progression by these therapeutic strategies. LAR breast cancer cells exhibited sensitivity to chidamide and enzalutamide individually, with a drug combination assay revealing their synergistic effect. Crucially, this synergistic effect was verified through in vivo allograft models and patient-derived organoids. Furthermore, transcriptomic analysis demonstrated that the combination therapeutic strategy could inhibit tumor progression by regulating metabolism and autophagy. This study confirmed that the combination of histone deacetylase (HDAC) inhibitors and androgen receptor (AR) antagonists possessed greater therapeutic efficacy than monotherapy in LAR TNBC. This finding significantly bolsters the theoretical basis for the clinical translation of this combination therapy and provides an innovative strategy for the targeted treatment of LAR TNBC.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38619962

RESUMO

Graph convolutional networks (GCNs) have been widely used in skeleton-based action recognition. However, existing approaches are limited in fine-grained action recognition due to the similarity of interclass data. Moreover, the noisy data from pose extraction increase the challenge of fine-grained recognition. In this work, we propose a flexible attention block called channel-variable spatial-temporal attention (CVSTA) to enhance the discriminative power of spatial-temporal joints and obtain a more compact intraclass feature distribution. Based on CVSTA, we construct a multidimensional refinement GCN (MDR-GCN) that can improve the discrimination among channel-, joint-, and frame-level features for fine-grained actions. Furthermore, we propose a robust decouple loss (RDL) that significantly boosts the effect of the CVSTA and reduces the impact of noise. The proposed method combining MDR-GCN with RDL outperforms the known state-of-the-art skeleton-based approaches on fine-grained datasets, FineGym99 and FSD-10, and also on the coarse NTU-RGB + D 120 dataset and NTU-RGB + D X-view version. Our code is publicly available at https://github.com/dingyn-Reno/MDR-GCN.

19.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38564256

RESUMO

Microbial arsenic (As) methylation in paddy soil produces mainly dimethylarsenate (DMA), which can cause physiological straighthead disease in rice. The disease is often highly patchy in the field, but the reasons remain unknown. We investigated within-field spatial variations in straighthead disease severity, As species in rice husks and in soil porewater, microbial composition and abundance of arsM gene encoding arsenite S-adenosylmethionine methyltransferase in two paddy fields. The spatial pattern of disease severity matched those of soil redox potential, arsM gene abundance, porewater DMA concentration, and husk DMA concentration in both fields. Structural equation modelling identified soil redox potential as the key factor affecting arsM gene abundance, consequently impacting porewater DMA and husk DMA concentrations. Core amplicon variants that correlated positively with husk DMA concentration belonged mainly to the phyla of Chloroflexi, Bacillota, Acidobacteriota, Actinobacteriota, and Myxococcota. Meta-omics analyses of soil samples from the disease and non-disease patches identified 5129 arsM gene sequences, with 71% being transcribed. The arsM-carrying hosts were diverse and dominated by anaerobic bacteria. Between 96 and 115 arsM sequences were significantly more expressed in the soil samples from the disease than from the non-disease patch, which were distributed across 18 phyla, especially Acidobacteriota, Bacteroidota, Verrucomicrobiota, Chloroflexota, Pseudomonadota, and Actinomycetota. This study demonstrates that even a small variation in soil redox potential within the anoxic range can cause a large variation in the abundance of As-methylating microorganisms, thus resulting in within-field variation in rice straighthead disease. Raising soil redox potential could be an effective way to prevent straighthead disease.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Oryza/microbiologia , Solo/química , Metilação , Bactérias/genética , Ácido Cacodílico , Oxirredução , Poluentes do Solo/análise
20.
Exp Hematol Oncol ; 13(1): 47, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664743

RESUMO

Enhanced cellular therapy has emerged as a novel concept following the basis of cellular therapy. This treatment modality applied drugs or biotechnology to directly enhance or genetically modify cells to enhance the efficacy of adoptive cellular therapy (ACT). Drugs or biotechnology that enhance the killing ability of immune cells include immune checkpoint inhibitors (ICIs) / antibody drugs, small molecule inhibitors, immunomodulatory factors, proteolysis targeting chimera (PROTAC), oncolytic virus (OV), etc. Firstly, overcoming the inhibitory tumor microenvironment (TME) can enhance the efficacy of ACT, which can be achieved by blocking the immune checkpoint. Secondly, cytokines or cytokine receptors can be expressed by genetic engineering or added directly to adoptive cells to enhance the migration and infiltration of adoptive cells to tumor cells. Moreover, multi-antigen chimeric antigen receptors (CARs) can be designed to enhance the specific recognition of tumor cell-related antigens, and OVs can also stimulate antigen release. In addition to inserting suicide genes into adoptive cells, PROTAC technology can be used as a safety switch or degradation agent of immunosuppressive factors to enhance the safety and efficacy of adoptive cells. This article comprehensively summarizes the mechanism, current situation, and clinical application of enhanced cellular therapy, describing potential improvements to adoptive cellular therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...