Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Ophthalmol ; 17(3): 435-443, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721521

RESUMO

AIM: To investigate the underlying mechanism of dry environment (autumn dryness) affecting the lacrimal glands in rats. METHODS: Twenty Sprague-Dawley rats were randomly divided into two groups. The rats were fed in specific pathogen free environment as the control group (n=10), and the rats fed in dry environment as the dryness group (n=10). After 24d, lacrimal glands were collected from the rats. The tissues morphology was observed by hematoxylin-eosin (HE) staining. Tandem mass tags (TMT) quantitative proteomics analysis technology was used to screen the differential expressed proteins of lacrimal glands between the two groups, then bioinformatics analysis was performed. Further, the immunohistochemical (IHC) method was used to verify the target proteins. RESULTS: In dryness group, the lacrimal glands lobule atrophied, the glandular cavities enlarged, the sparse nuclear distribution and scattered inflammatory infiltration between the acinus were observed. The proteomics exhibited that a total of 195 up-regulated and 236 down-regulated differential expressed proteins screened from the lacrimal glands of rats. It was indicated that the biological processes (BP) of differential expressed proteins mainly included cell processes and single BP. The cellular compositions of differential expressed proteins mainly located in cells, organelles. The molecular functions of differential expressed proteins mainly included binding, catalytic activity. Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the differential expressed proteins mainly involved lysosome, complement and coagulation cascade, and ribosome pathway. The IHC result verified that the up-regulated expression proteins of Protein S100A9 (S100A9), Annexin A1 (Anxa1), and Clusterin (Clu) in lacrimal glands of rats in dryness group were higher than control group. CONCLUSION: The up-regulated expression proteins of S100A9, Anxa1, and Clu may be the potential mechanisms of dry eye symptoms caused by dry environment. This study provides clues of dry environments causing eye-related diseases for further studies.

2.
Angew Chem Int Ed Engl ; 62(45): e202307086, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37475578

RESUMO

Synthesis of formate from hydrogenation of carbon dioxide (CO2 ) is an atom-economic reaction but is confronted with challenges in developing high-performance non-precious metal catalysts for application of the process. Herein, we report a highly durable edge-rich molybdenum disulfide (MoS2 ) catalyst for CO2 hydrogenation to formate at 200 °C, which delivers a high selectivity of over 99 % with a superior turnover frequency of 780.7 h-1 surpassing those of previously reported non-precious metal catalysts. Multiple experimental characterization techniques combined with theoretical calculations reveal that sulfur vacancies at MoS2 edges are the active sites and the selective production of formate is enabled via a completely new water-mediated hydrogenation mechanism, in which surface OH* and H* species in dynamic equilibrium with water serve as moderate hydrogenating agents for CO2 with residual O* reduced by hydrogen. This study provides a new route for developing low-cost high-performance catalysts for CO2 hydrogenation to formate.

3.
Bioact Mater ; 15: 330-342, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35356819

RESUMO

Improving the degree of vascularization through the regulation of wound microenvironment is crucial for wound repair. Gene activated matrix (GAM) technology provides a new approach for skin regeneration. It is a local gene delivery system that can not only maintain a moist environment, but also increase the concentration of local active factors. For this purpose, we fabricated the mVEGF165/TGF-ß1 gene-loaded N-carboxymethyl chitosan/sodium alginate hydrogel and studied its effect on promoting deep second degree burn wound repair. The average diameter of the hydrogel pores was 100 µm and the porosity was calculated as 50.9%. SEM and CLSM images showed that the hydrogel was suitable for cell adhesion and growth. The NS-GAM could maintain continuous expression for at least 9 days in vitro, showing long-term gene release and expression effect. Deep second-degree burn wound model was made on the backs of Wistar rats to evaluate the healing effect. The wounds were healed by day 22 in NS-GAM group with the prolonged high expression of VEGF and TGF-ß1 protein. A high degree of neovascularization and high expression level of CD34 were observed in NS-GAM group in 21 days. The histological results showed that NS-GAM had good tissue safety and could effectively promote epithelialization and collagen regeneration. These results indicated that the NS-GAM could be applied as a promising local gene delivery system for the repair of deep second-degree burn wounds.

4.
Bioact Mater ; 6(10): 3025-3035, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33778185

RESUMO

Nanocarriers have emerged as a promising cancer drug delivery strategy. Multi-drug resistance caused by overexpression of multiple-drug excretion transporters in tumor cells is the major obstacle to successful chemotherapy. Vitamin E derivatives have many essential functions for drug delivery applications, such as biological components that are hydrophobic, stable, water-soluble enhancing compounds, and anticancer activity. In addition, vitamin E derivatives are also effective mitocan which can overcome multi-drug resistance by binding to P glycoproteins. Here, we developed a carboxymethyl chitosan/vitamin E succinate nano-micellar system (O-CMCTS-VES). The synthesized polymers were characterized by Fourier Transform IR, and 1H NMR spectra. The mean sizes of O-CMCTS-VES and DOX-loaded nanoparticles were around 177 nm and 208 nm. The drug loading contents were 6.1%, 13.0% and 10.6% with the weight ratio of DOX to O-CMCTS-VES corresponding 1:10, 2:10 and 3:10, and the corresponding EEs were 64.3%, 74.5% and 39.7%. Cytotoxicity test, hemolysis test and histocompatibility test showed that it had good biocompatibility in vitro and in vivo. Drug release experiments implied good pH sensitivity and sustained-release effect. The DOX/O-CMCTS-VES nanoparticles can be efficiently taken up by HepG2 cancer cells and the tumor inhibition rate is up to 62.57%. In the in vivo study by using H22 cells implanted Balb/C mice, DOX/O-CMCTS-VES reduced the tumor volume and weight efficiently with a TIR of 35.58%. The newly developed polymeric micelles could successfully be utilized as a nanocarrier system for hydrophobic chemotherapeutic agents for the treatment of solid tumors.

5.
J Biomed Mater Res A ; 108(12): 2409-2420, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32363745

RESUMO

Although in a series of studies, arginine peptides had shown the ability to promote the targeting delivery efficacy, the relationship between the transfection efficiency and the length of the poly-l-arginine chain had seldom been reported. This study was aimed to explore whether the chain length of poly-l-arginine grafted on chitosan had a great significance on the transfection efficiency of entering the cells. Herein, arginine and arginine peptide modified chitosan were synthesized as gene vectors (CS-Arg and CS-5Arg) and then the chemical structures were characterized by using 1 H NMR. The CS-Arg and CS-5Arg were combined with plasmids by electrostatic interactions to form stable particles. The morphology features, Zeta potentials, and buffering capacity of the complex particles were analyzed. Afterward, the combination ability with DNA and the protection ability to DNase I were studied, and the gene transfection efficiency and cellular uptake were investigated in vitro. The results showed that the gene transfection efficiency of the chitosan was significantly enhanced by arginine-graft modification. However, there were no significant differences between the CS-Arg and the CS-5Arg. The molecular simulation results indicated that the guanidine groups of grafted arginine were shielded by chitosan molecule and the guanidine groups contributed little to the gene transfection efficiency. The results demonstrated that the increased chain length of grafted arginine had no significantly enhanced effect on the transfection efficiency, which could provide convincing evidence for the construction and application of arginine and chitosan derivatives as gene vectors, and could promote the development of gene delivery system.


Assuntos
Quitosana/química , Vetores Genéticos/química , Peptídeos/química , Plasmídeos/química , Transfecção , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...