Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e31250, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828344

RESUMO

This study aimed to ascertain the delayed effects of various exposure temperatures on infectious diarrhea. We performed a Bayesian random-effects network meta-analysis to calculate relative risks (RR) with 95 % confidence intervals (95 % CI). The heterogeneity was analyzed by subgroup analysis. There were 25 cross-sectional studies totaling 6858735 patients included in this analysis, with 12 articles each investigating the effects of both hyperthermia and hypothermia. Results revealed that both high temperature (RRsingle = 1.22, 95%CI:1.04-1.44, RRcum = 2.96, 95%CI:1.60-5.48, P < 0.05) and low temperature (RRsingle = 1.17, 95%CI:1.02-1.37, RRcum = 2.19, 95%CI:1.33-3.64, P < 0.05) significantly increased the risk of infectious diarrhea, while high temperature caused greater. As-sociations with strengthening in bacillary dysentery were found for high temperatures (RRcum = 2.03, 95%CI:1.41-3.01, P < 0.05; RRsingle = 1.17, 95%CI:0.90-1.62, P > 0.05), while the statistical significance of low temperatures in lowering bacterial dysentery had vanished. This investigation examined that high temperature and low temperature were the conditions that posed the greatest risk for infectious diarrhea. This research offers fresh perspectives on preventing infectious diarrhea and will hopefully enlighten future studies on the impact of temperature management on infectious diarrhea.

2.
Int Immunopharmacol ; 122: 110613, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421776

RESUMO

With significant developments in chimeric antigen receptor T-cell therapy, adoptive immunotherapy has unlocked new levels of treatment for malignancies. Natural killer (NK) cells are promising alternative immune effector cells for this strategy. Multiple anti-tumor therapies are largely dependent on type I interferon (IFN) signaling. Type I IFNs enhance NK cell cytotoxicity. Novaferon (nova) is an unnatural, novel IFN-like protein produced by gene shuffling of IFN-α with strong biological activity. To augment the antitumor activity of NK cells, we generated NK92-nova cells that stably express nova. We found that NK92-nova cells mediated enhanced pan-cancer antitumor activity compared to NK92-vec cells. The increased antitumor activity was associated with the enhanced secretion of cytokines, such as IFN-γ, perforin, and granzyme B. Meanwhile, most of the activating receptors were upregulated in the NK92-nova cells. After co-culture with NK92-nova cells, the expression of NKG2D ligands on the HepG2 cells increased, resulting in an enhanced susceptibility of HepG2 cells to NK92 cell-mediated cytolysis. NK92-nova cells significantly inhibited HepG2 tumor growth in a xenograft model without systemic toxicity. Therefore, NK92-nova cells are a novel and safe strategy for cancer immunotherapy.


Assuntos
Citotoxicidade Imunológica , Células Matadoras Naturais , Humanos , Citocinas/metabolismo , Interferon-alfa/metabolismo , Linhagem Celular Tumoral
3.
Bioengineering (Basel) ; 10(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37237630

RESUMO

In this article, we report a method for preparing an immobilized bacterial agent of petroleum-degrading bacteria Gordonia alkanivorans W33 by combining high-density fermentation and bacterial immobilization technology and testing its bioremediation effect on petroleum-contaminated soil. After determining the optimal combination of MgCl2, CaCl2 concentration, and culture time in the fermentation conditions by conducting a response surface analysis, the cell concentration reached 7.48 × 109 CFU/mL by 5 L fed-batch fermentation. The W33-vermiculite-powder-immobilized bacterial agent mixed with sophorolipids and rhamnolipids in a weight ratio of 9:10 was used for the bioremediation of petroleum-contaminated soil. After 45 days of microbial degradation, 56.3% of the petroleum in the soil with 20,000 mg/kg petroleum content was degraded, and the average degradation rate reached 250.2 mg/kg/d.

4.
Mol Immunol ; 144: 58-70, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35203022

RESUMO

The continuous, in-depth exploration of the occurrence and development of cancer has shown that immune cell dysfunction is closely associated with tumor progression and poor clinical prognosis. The inhibition of the effector functions of immune cells by numerous immunosuppressive factors in the tumor microenvironment (TME) promotes the progression and metastasis of malignant tumors. Natural killer (NK) cells are the main effector cells in the anti-tumor innate immune system. Dysfunctional NK cells, characterized as weakened proliferation capacity and reduced production of effector cytokines, have limited ability to kill malignant cells and inhibit tumor progression. The reversal of the dysfunctional state of NK cells and enhancement of their effector functions is a promising strategy that could improve the effectiveness of cancer immunotherapy. In order to fully use of the cytotoxic effects of NK cells and revitalize the anti-tumor potential of NK cells in tumor patients, it is necessary to learn more about the characteristics of NK cell dysfunction in TME. This will provide valuable information for the development of personalized strategies to restore anti-tumor immunity. Here, we reviewed the characteristics of dysfunctional NK cells in the TME and latest progress in research, and discussed promising immunotherapy strategies that could utilize NK cell potential for cancer immunotherapy.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Humanos , Imunoterapia , Células Matadoras Naturais , Microambiente Tumoral
5.
Environ Sci Pollut Res Int ; 28(34): 46877-46893, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34254241

RESUMO

With the enhancement of environmental protection awareness, research on the bioremediation of petroleum hydrocarbon environmental pollution has intensified. Bioremediation has received more attention due to its high efficiency, environmentally friendly by-products, and low cost compared with the commonly used physical and chemical restoration methods. In recent years, bacterium engineered by systems biology strategies have achieved biodegrading of many types of petroleum pollutants. Those successful cases show that systems biology has great potential in strengthening petroleum pollutant degradation bacterium and accelerating bioremediation. Systems biology represented by metabolic engineering, enzyme engineering, omics technology, etc., developed rapidly in the twentieth century. Optimizing the metabolic network of petroleum hydrocarbon degrading bacterium could achieve more concise and precise bioremediation by metabolic engineering strategies; biocatalysts with more stable and excellent catalytic activity could accelerate the process of biodegradation by enzyme engineering; omics technology not only could provide more optional components for constructions of engineered bacterium, but also could obtain the structure and composition of the microbial community in polluted environments. Comprehensive microbial community information lays a certain theoretical foundation for the construction of artificial mixed microbial communities for bioremediation of petroleum pollution. This article reviews the application of systems biology in the enforce of petroleum hydrocarbon degradation bacteria and the construction of a hybrid-microbial degradation system. Then the challenges encountered in the process and the application prospects of bioremediation are discussed. Finally, we provide certain guidance for the bioremediation of petroleum hydrocarbon-polluted environment.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos , Poluição por Petróleo/análise , Microbiologia do Solo , Poluentes do Solo/análise
6.
Biomater Sci ; 9(8): 3019-3027, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33656040

RESUMO

The abscopal effect of radiation therapy (RT) is clinically significant but occurs rarely. Although anti-programmed cell death protein 1 antibody (anti-PD1) is likely to enhance the abscopal effect in patients receiving RT, the incidence rate remains less than 30%. One major limitation is the paucity of CD8+ T cells within non-irradiated tumors. Here, cisplatin (CDDP) loaded poly(l-glutamic acid)-graft-methoxy poly(ethylene glycol) complex nanoparticles (CDDP-NPs) are confirmed to increase CD8+ T cells within non-irradiated tumors and boost the abscopal effect of RT plus anti-PD1, and more strongly than CDDP. Compared to RT and RT + CDDP, RT + CDDP-NPs induced greater immunogenic cell death (ICD) with enhanced proportion of Calreticulin+ Lewis lung cancer (LLC) cells (16.47%, 20.53% and 27.03%), along with which more CD8+ T cells were infiltrated into CDDP-NP treated irradiated tumors in the unilateral LLC tumor model. In the bilateral LLC tumor model, RT + CDDP-NPs significantly induced more chemokine (C-X-C motif) ligand 10 (CXCL10) secretion (36.3, 44.19 and 56.37 pg mL-1), which corresponded to greater CD8+ T cell infiltration in the non-irradiated tumors (0.19%, 0.20% and 0.72%). Finally, compared to RT + anti-PD1 and RT + anti-PD1 + CDDP, RT + anti-PD1 + CDDP-NPs significantly inhibited the growth of non-irradiated tumors more forcefully, as indicated by the respective tumor volumes of 1141, 1146 and 585 mm3. This is the first study to show that CDDP-NPs can amplify RT-induced immune activation and break through the efficiency limitation of the RT plus anti-PD1 induced abscopal effect.


Assuntos
Cisplatino , Nanopartículas , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Humanos , Polietilenoglicóis , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...