Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Anal Bioanal Chem ; 416(14): 3447-3458, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642097

RESUMO

N-Terminal pro-B-type natriuretic peptide (NT-proBNP) is a pivotal biomarker for the diagnosis and prognosis of heart failure (HF). However, no SI-traceable certified reference material (CRM) or reference measurement procedure (RMP) is available for this biomarker, and so clinical testing results obtained in different laboratories cannot be traced to a higher-order standard, leading to incomparable measurements. Protein hydrolysis and protein cleavage isotope dilution mass spectrometry (AAA-IDMS and PepA-IDMS) were used to develop a CRM. Structurally related impurities were identified by high-resolution mass spectrometry. The quantitative AAA-IDMS results were corrected according to the amino acid compositions of the impurities. Using PepA-IDMS, two peptides from the proteolyzed product were confirmed as signature peptides. To obtain traceable and accurate results, the signature peptides were quantified using impurity-corrected AAA-IDMS. The candidate NT-proBNP solution was denatured and enzymatically digested using the Glu-C endoproteinase. The released signature peptides were measured using an isotopic dilution approach. The homogeneity and stability of the candidate CRM were characterized, and their uncertainties were combined with the value assignment process. The developed CRM can be considered a unique SI-traceable NT-proBNP reference material and is expected to be used as a primary calibrator for matrix NT-proBNP CRM development.


Assuntos
Espectrometria de Massas , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Padrões de Referência , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/análise , Humanos , Espectrometria de Massas/métodos , Biomarcadores/sangue , Biomarcadores/análise , Técnicas de Diluição do Indicador
2.
Front Cell Dev Biol ; 11: 1286223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130952

RESUMO

Low back pain caused by disc herniation and spinal stenosis imposes an enormous medical burden on society due to its high prevalence and refractory nature. This is mainly due to the long-term inflammation and degradation of the extracellular matrix in the process of intervertebral disc degeneration (IVDD), which manifests as loss of water in the nucleus pulposus (NP) and the formation of fibrous disc fissures. Biomaterial repair strategies involving hydrogels play an important role in the treatment of intervertebral disc degeneration. Excellent biocompatibility, tunable mechanical properties, easy modification, injectability, and the ability to encapsulate drugs, cells, genes, etc. make hydrogels good candidates as scaffolds and cell/drug carriers for treating NP degeneration and other aspects of IVDD. This review first briefly describes the anatomy, pathology, and current treatments of IVDD, and then introduces different types of hydrogels and addresses "smart hydrogels". Finally, we discuss the feasibility and prospects of using hydrogels to treat IVDD.

3.
Front Oncol ; 13: 1187942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37503322

RESUMO

Background: Due to the low incidence of adult fibrosarcoma (AFS), it is difficult for clinicians to assess cancer-specific survival (CSS) in elderly patients based on this study. The study aimed to develop nomograms capable of accurately predicting 3-, 5-, and 8-year CSS in patients over 40 years of age with AFS. Methods: Data were collected from The Surveillance, Epidemiology, and End Results (SEER) registry. 586 patients were included in this study. Univariate as well as multivariate Cox regression analyses were applied to identify independent risk factors. A nomogram was constructed and validated to predict the 3-, 5-, and 8-year CSS of patients. Results: Five variables including age, sex, stage, grade, and chemotherapy status were considered independent risk factors and were used to construct the nomogram. The nomogram was well validated. The C-indexes of the training cohort and the validation cohort are 0.766 and 0.780, respectively. In addition, the area under the curves for 3-, 5- and 8-year CSS are 0.824, 0.846 and 0.840 in the training cohort, 0.835, 0.806 and 0.829 in the validation cohort. Calibration curves were also plotted to show that predicted endings have a well fit for the true endings. Finally, decision curve analysis demonstrates that the nomogram can bring a high benefit to patients. Conclusion: We successfully constructed a highly accurate nomogram to predict the CSS of AFS patients at 3-, 5-, and 8 years. The nomogram can greatly help clinicians and patients with AFS.

4.
Front Chem ; 11: 1190596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206197

RESUMO

Introduction: Chemotherapy is a common strategy for the treatment of osteosarcoma. However, its therapeutic efficacy is not ideal due to the low targeting, lowbioavailability, and high toxicity of chemotherapy drugs. Nanoparticles can improve the residence time of drugs at tumor sites through targeted delivery. This new technology can reduce the risk to patients and improve survival rates. To achieve this goal, we developed a pHsensitive charge-conversion polymeric micelle [mPEG-b-P(C7-co-CA) micelles] for osteosarcoma-targeted delivery of cinnamaldehyde (CA). Methods: First, an amphiphilic cinnamaldehyde polymeric prodrug [mPEG-b-P(C7-co-CA)] was synthesized through Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) polymerization and post-modification, and self-assembled into mPEG-b-P(C7-co-CA) micelles in an aqueous solution. The physical properties of mPEG-b-P(C7-co-CA) micelles, such as critical micelle concentration (CMC), size, appearance, and Zeta potential were characterized. The CA release curve of mPEG-b-P(C7-co-CA) micelles at pH 7.4, 6.5 and 4.0 was studied by dialysis method, then the targeting ability of mPEG-b-P(C7-co-CA) micelles to osteosarcoma 143B cells in acidic environment (pH 6.5) was explored by cellular uptakeassay. The antitumor effect of mPEG-b-P(C7-co-CA) micelles on 143B cells in vitro was studied by MTT method, and the level of reactive oxygen species (ROS) in 143B cells after mPEG-b-P(C7-co-CA) micelles treatment was detected. Finally, the effects of mPEG-b-P(C7-co-CA) micelles on the apoptosis of 143B cells were detected by flow cytometry and TUNEL assay. Results: An amphiphilic cinnamaldehyde polymeric prodrug [mPEG-b-P(C7-co-CA)] was successfully synthesized and self-assembled into spheric micelles with a diameter of 227 nm. The CMC value of mPEG-b-P(C7-co-CA) micelles was 25.2 mg/L, and it showed a pH dependent release behavior of CA. mPEG-b-P(C7-co-CA) micelles can achieve chargeconversion from a neutral to a positive charge with decreasing pHs. This charge-conversion property allows mPEG-b-P(C7-co-CA) micelles to achieve 143B cell targeting at pH 6.5. In addition, mPEG-b-P(C7-co-CA) micelles present high antitumor efficacy and intracellular ROS generation at pH 6.5 which can induce 143B cell apoptosis. Discussion: mPEG-b-P(C7-co-CA) micelles can achieve osteosarcoma targeting effectively and enhance the anti-osteosarcoma effect of cinnamaldehyde in vitro. This research provides a promising drug delivery system for clinical application and tumor treatment.

5.
Eur J Pharmacol ; 950: 175753, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37119958

RESUMO

Osteoporosis is a common disease in elderly individuals, and osteoporosis can easily lead to bone and hip fractures that seriously endanger the health of elderly individuals. At present, the treatment of osteoporosis is mainly anti-osteoporosis drugs, but there are side effects associated with anti-osteoporosis drugs. Therefore, it is very important to develop early diagnostic indicators and new therapeutic drugs for the prevention and treatment of osteoporosis. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 nucleotides, can be used as diagnostic markers for osteoporosis, and lncRNAs play an important role in the progression of osteoporosis. Many studies have shown that lncRNAs can be the target of osteoporosis. Therefore, herein, the role of lncRNAs in osteoporosis is summarized, aiming to provide some information for the prevention and treatment of osteoporosis.


Assuntos
Osteoporose , RNA Longo não Codificante , Humanos , Idoso , RNA Longo não Codificante/genética , Osteoporose/tratamento farmacológico , Osteoporose/genética , RNA não Traduzido , Osso e Ossos
6.
J Oncol ; 2023: 2805786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915645

RESUMO

Background: For elderly patients with primary spinal tumors, surgery is the best option for many elderly patients, in addition to palliative care. However, due to the unique physical function of elderly patients, the short-term prognosis is often unpredictable. It is therefore essential to develop a novel nomogram as a clinical aid to predict the risk of early death for elderly patients with primary spinal tumors who undergo surgery. Materials and Methods: In this study, clinical data were obtained from 651 patients through the SEER database, and they were retrospectively analyzed. Logistic regression analyses were used for risk-factor screening. Predictive modeling was performed through the R language. The prediction models were calibrated as well as evaluated for accuracy in the validation cohort. The receiver operating characteristic (ROC) curve and the decision curve analysis (DCA) were used to evaluate the functionality of the nomogram. Results: We identified four separate risk factors for constructing nomograms. The area under the receiver operating characteristic curve (training set 0.815, validation set 0.815) shows that the nomogram has good discrimination ability. The decision curve analysis demonstrates the clinical use of this nomogram. The calibration curve indicates that this nomogram has high accuracy. At the same time, we have also developed a web version of the online nomogram for clinical practitioners to apply. Conclusions: We have successfully developed a nomogram that can accurately predict the risk of early death of elderly patients with primary spinal tumors undergoing surgery, which can provide a reference for clinicians.

7.
J Clin Med ; 12(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902773

RESUMO

Osteoarthritis refers to a degenerative disease with joint pain as the main symptom, and it is caused by various factors, including fibrosis, chapping, ulcers, and loss of articular cartilage. Traditional treatments can only delay the progression of osteoarthritis, and patients may need joint replacement eventually. As a class of organic compound molecules weighing less than 1000 daltons, small molecule inhibitors can target proteins as the main components of most drugs clinically. Small molecule inhibitors for osteoarthritis are under constant research. In this regard, by reviewing relevant manuscripts, small molecule inhibitors targeting MMPs, ADAMTS, IL-1, TNF, WNT, NF-κB, and other proteins were reviewed. We summarized these small molecule inhibitors with different targets and discussed disease-modifying osteoarthritis drugs based on them. These small molecule inhibitors have good inhibitory effects on osteoarthritis, and this review will provide a reference for the treatment of osteoarthritis.

8.
Biosensors (Basel) ; 13(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36832051

RESUMO

Opioids are widely used in clinical practice, but drug overdoses can lead to many adverse reactions, and even endanger life. Therefore, it is essential to implement real-time measurement of drug concentrations to adjust the dosage given during treatment, keeping drug levels within therapeutic levels. Metal-Organic frameworks (MOFs) and their composite materials modified bare electrode electrochemical sensors have the advantages of fast production, low cost, high sensitivity, and low detection limit in the detection of opioids. In this review, MOFs and MOFs composites, electrochemical sensors modified with MOFs for the detection of opioids, as well as the application of microfluidic chips in combination with electrochemical methods are all reviewed, and the potential for the development of microfluidic chips electrochemical methods with MOFs surface modifications for the detection of opioids is also prospected. We hope that this review will provide contributions to the study of electrochemical sensors modified with MOFs for the detection of opioids.


Assuntos
Estruturas Metalorgânicas , Analgésicos Opioides
9.
Exp Biol Med (Maywood) ; 248(6): 469-480, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36852460

RESUMO

In recent years, an increasing number of studies have reported that long non-coding RNAs (lncRNAs) play essential regulatory roles in myogenic differentiation. In this study, a specific LncRNA XLOC_015548 (Lnc000280) was identified. However, little research has explored its mechanism of action by constructing XLOC_015548 gene editing cell models. In this study, relevant sequences were obtained according to the RNA-seq results. Subsequently, XLOC_015548 knockdown and over-expression lentiviral vectors were constructed, and the C2C12 myoblast cell line was transfected to prepare the XLOC_015548 gene-edited myoblast model. The in vitro analysis revealed that over-expression of XLOC_015548 significantly promoted the proliferation and differentiation of myoblasts and the formation of myotubes, whereas the opposite result was obtained in the knockdown group. XLOC_015548 regulated myogenic differentiation and affected the expression of myogenic differentiation regulators such as Myod, myogenin, and MyHC. Regarding the signaling pathway, we found that XLOC_015548 correlated with the phosphorylation level of MAPK/MEK/ERK pathway proteins. And the degree of phosphorylation was positively correlated with the protein expression of myogenic differentiation regulators. In conclusion, a new gene-edited myoblast model was constructed based on the lncRNA regulator XLOC_015548. The in vitro cell experiments verified that XLOC_015548 had regulatory effects on muscle growth and myoblast differentiation. These findings provide a laboratory foundation for the clinical application of lncRNAs as regulatory factors in the treatment of disuse muscle atrophy.


Assuntos
Sistema de Sinalização das MAP Quinases , RNA Longo não Codificante , Sistema de Sinalização das MAP Quinases/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , Transdução de Sinais/genética , Mioblastos/metabolismo , Proliferação de Células/genética , Miogenina/genética , Miogenina/metabolismo
10.
Lab Chip ; 23(5): 1258-1278, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752545

RESUMO

The PCR technique has been known to the general public since the pandemic outbreak of COVID-19. This technique has progressed through three stages: from simple PCR to real-time fluorescence PCR to digital PCR. Among them, the microfluidic-based droplet digital PCR technique has attracted much attention and has been widely applied due to its advantages of high throughput, high sensitivity, low reagent consumption, low cross-contamination, and absolute quantification ability. In this review, we introduce various designs of microfluidic-based ddPCR developed within the last decade. The microfluidic-based droplet generation methods, thermal cycle strategies, and signal counting approaches are described, and the applications in the fields of single-cell analysis, disease diagnosis, and pathogen detection are introduced. Further, the challenges and prospects of microfluidic-based ddPCR are discussed. We hope that this review can contribute to the further development of the microfluidic-based ddPCR technique.


Assuntos
COVID-19 , Microfluídica , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Teste para COVID-19
11.
Medicina (Kaunas) ; 59(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36676745

RESUMO

Osteoporosis is mainly a geriatric disease with a high incidence, and the resulting spinal fractures and hip fractures cause great harm to patients. Anti-osteoporosis drugs are the main treatment for osteoporosis currently, but these drugs have potential clinical limitations and side effects, so the development of new therapies is of great significance to patients with osteoporosis. Electrical stimulation therapy mainly includes pulsed electromagnetic fields (PEMF), direct current (DC), and capacitive coupling (CC). Meanwhile, electrical stimulation therapy is clinically convenient without side effects. In recent years, many researchers have explored the use of electrical stimulation therapy for osteoporosis. Based on this, the role of electrical stimulation therapy in osteoporosis was summarized. In the future, electrical stimulation might become a new treatment for osteoporosis.


Assuntos
Terapia por Estimulação Elétrica , Magnetoterapia , Osteoporose , Humanos , Idoso , Osteoporose/terapia , Osteoporose/etiologia , Terapia por Estimulação Elétrica/efeitos adversos , Terapia por Estimulação Elétrica/métodos , Magnetoterapia/métodos , Estimulação Elétrica/efeitos adversos
12.
Curr Stem Cell Res Ther ; 18(3): 339-346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35733319

RESUMO

Osteoporosis is a systemic disease in which bone mass decreases, leading to an increased risk of bone fragility and fracture. The occurrence of osteoporosis is believed to be related to the disruption of the differentiation of mesenchymal stem cells into osteoblasts and adipocytes. N6-adenylate methylation (m6A) modification is the most common type of chemical RNA modification and refers to a methylation modification formed by the nitrogen atom at position 6 of adenine (A), which is catalyzed by a methyltransferase. The main roles of m6A are the post-transcriptional level regulation of the stability, localization, transportation, splicing, and translation of RNA; these are key elements of various biological activities, including osteoporosis and the differentiation of mesenchymal stem cells into osteoblasts and adipocytes. The main focus of this review is the role of m6A in these two biological processes.


Assuntos
Adenina , Células-Tronco Mesenquimais , Osteoporose , Humanos , Adipócitos , Diferenciação Celular/fisiologia , Osteoblastos , RNA , Adenina/metabolismo
13.
Biol Trace Elem Res ; 201(6): 2823-2842, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35870071

RESUMO

Bone defects are often caused by trauma or surgery and can lead to delayed healing or even bone nonunion, thereby resulting in impaired function of the damaged site. Magnesium ions and related metallic materials play a crucial role in repairing bone defects, but the mechanism remains unclear. In this study, we induced the angiogenic differentiation of bone marrow stromal cells (BMSCs) with different concentrations of magnesium ions. The mechanism was investigated using γ-secretase inhibitor (DAPT) at different time points (7 and 14 days). Angiogenesis, differentiation, migration, and chemotaxis were detected using the tube formation assay, wound-healing assay, and Transwell assay. Besides, we analyzed mRNA expression and the angiogenesis-related protein levels of genes by RT-qPCR and western blot. We discovered that compared with other concentrations, the 5 mM magnesium ion concentration was more conducive to forming tubes. Additionally, hypoxia-inducible factor 1 alpha (Hif-1α) and endothelial nitric oxide (eNOS) expression both increased (p < 0.05). After 7 and 14 days of induction, 5 mM magnesium ion group tube formation, migration, and chemotaxis were enhanced, and the expression of Notch pathway genes increased. Moreover, expression of the Notch target genes hairy and enhancer of split 1 (Hes1) and Hes5 (hairy and enhancer of split 5), as well as the angiogenesis-related genes Hif-1α and eNOS, were enhanced (p < 0.05). However, these trends did not occur when DAPT was applied. This indicates that 5 mM magnesium ion is the optimal concentration for promoting the angiogenesis and differentiation of BMSCs in vitro. By activating the Notch signaling pathway, magnesium ions up-regulate the downstream genes Hes1 and Hes5 and the angiogenesis-related genes Hif-1α and eNOS, thereby promoting the angiogenesis differentiation of BMSCs. Additionally, magnesium ion-induced differentiation enhances the migration and chemotaxis of BMSCs. Thus, we can conclude that magnesium ions and related metallic materials promote angiogenesis to repair bone defects. This provides the rationale for developing artificial magnesium-containing bone materials through tissue engineering.


Assuntos
Magnésio , Células-Tronco Mesenquimais , Ratos , Animais , Magnésio/farmacologia , Magnésio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osso e Ossos/metabolismo , Engenharia Tecidual/métodos , Transdução de Sinais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Osteogênese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
14.
Exp Mol Med ; 54(9): 1472-1485, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36056188

RESUMO

Both O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) and endoplasmic reticulum-phagy (ER-phagy) are well-characterized conserved adaptive regulatory mechanisms that maintain cellular homeostasis and function in response to various stress conditions. Abnormalities in O-GlcNAcylation and ER-phagy have been documented in a wide variety of human pathologies. However, whether O-GlcNAcylation or ER-phagy is involved in the pathogenesis of intervertebral disc degeneration (IDD) is largely unknown. In this study, we investigated the function of O-GlcNAcylation and ER-phagy and the related underlying mechanisms in IDD. We found that the expression profiles of O-GlcNAcylation and O-GlcNAc transferase (OGT) were notably increased in degenerated NP tissues and nutrient-deprived nucleus pulposus (NP) cells. By modulating the O-GlcNAc level through genetic manipulation and specific pharmacological intervention, we revealed that increasing O-GlcNAcylation abundance substantially enhanced cell function and facilitated cell survival under nutrient deprivation (ND) conditions. Moreover, FAM134B-mediated ER-phagy activation was regulated by O-GlcNAcylation, and suppression of ER-phagy by FAM134B knockdown considerably counteracted the protective effects of amplified O-GlcNAcylation. Mechanistically, FAM134B was determined to be a potential target of OGT, and O-GlcNAcylation of FAM134B notably reduced FAM134B ubiquitination-mediated degradation. Correspondingly, the protection conferred by modulating O-GlcNAcylation homeostasis was verified in a rat IDD model. Our data demonstrated that OGT directly associates with and stabilizes FAM134B and subsequently enhances FAM134B-mediated ER-phagy to enhance the adaptive capability of cells in response to nutrient deficiency. These findings may provide a new option for O-GlcNAcylation-based therapeutics in IDD prevention.


Assuntos
Degeneração do Disco Intervertebral , Animais , Autofagia , Retículo Endoplasmático/metabolismo , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Ratos
15.
J Mater Chem B ; 10(27): 5263-5271, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35762903

RESUMO

Sulfur dioxide (SO2) based gas therapy has received great attention recently. Nevertheless, it is still a challenge to fabricate a SO2 delivery system to achieve effective delivery and on-demand stimuli triggered release at tumor sites. Herein, a chain-shattering polymeric SO2 prodrug micelle system was fabricated for effective SO2 based gas therapy. First, an amphiphilic polymer (mPEG-P(HDI-DN)) was prepared by polycondensation of poly(ethylene glycol) methyl ether, hexamethylene diisocyanate and monomer containing SO2. mPEG-P(HDI-DN) can self-assemble into spherical micelles with a diameter of around 50-90 nm. Triggered release of SO2 from micelles can be achieved in the presence of GSH with the degradation of mPEG-P(HDI-DN) into small molecules. The in vitro experiment proved that mPEG-P(HDI-DN) micelles can enter into osteosarcoma cells and inhibit the growth of osteosarcoma cells by increasing the ROS level in cells. The in vivo experiments demonstrate that mPEG-P(HDI-DN) micelles can inhibit the growth of osteosarcoma effectively without obvious tissue toxicity. These results indicate that this chain-shattering polymeric SO2 prodrug micelle system is a promising candidate for effective SO2 based gas therapy.


Assuntos
Osteossarcoma , Pró-Fármacos , Portadores de Fármacos , Humanos , Micelas , Osteossarcoma/tratamento farmacológico , Oxirredução , Polímeros , Pró-Fármacos/farmacologia , Dióxido de Enxofre
16.
Small ; 18(19): e2107992, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35362237

RESUMO

Adhesion of single cells is the foundation of manifold cellular behaviors and life processes. However, investigating the function of a specific cell is still challenging due to deficiency of adhesion or interference from surrounding cells. Herein, an open microfluidic system is reported for culturing adherent single cells, implemented by a micrometer-scale droplet matrix on an inkjet-printed polylysine template. The target cells are isolated from any cell from other droplets, and their adhesion strength is determined to be comparable to conventional petri dishes via an in-situ investigation with a microfluidic extractor. On this proposed platform, isolated single cells are observed to display an entirely distinct spreading behavior featuring total absence of elongation, indicating drastic cell behavior change from their "singleness." This system has high versatility and compatibility for various assaying methods, assuring a promising potential in detailed single cell behavior and cell heterogeneity studies.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas de Cultura de Células , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Polilisina
17.
Membranes (Basel) ; 12(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35323799

RESUMO

As an insidious metabolic bone disease, osteoporosis plagues the world, with high incidence rates. Patients with osteoporosis are prone to falls and becoming disabled, and their cone fractures and hip fractures are very serious, so the diagnosis and treatment of osteoporosis is very urgent. Extracellular vesicles (EVs) are particles secreted from cells to the outside of the cell and they are wrapped in a bilayer of phospholipids. According to the size of the particles, they can be divided into three categories, namely exosomes, microvesicles, and apoptotic bodies. The diameter of exosomes is 30-150 nm, the diameter of microvesicles is 100-1000 nm, and the diameter of apoptotic bodies is about 50-5000 nm. EVs play an important role in various biological process and diseases including osteoporosis. In this review, the role of EVs in osteoporosis is systematically reviewed and some insights for the prevention and treatment of osteoporosis are provided.

18.
Anal Chem ; 94(9): 3963-3969, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35195984

RESUMO

Pathogen infections present a considerable threat to global health owing to the high morbidity and mortality, and usually multiple pathogens coexist in food and the environment. Consequently, it is in urgent need to develop some multiplexed and sensitive approaches for pathogen detection. Here, we presented a novel strategy using mass tag-mediated surface engineering for simultaneous detection of multiple bacteria by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Following aptamer binding, primer amplification, and DNA hybridization, bacteria were specifically labeled by their corresponding mass tags, which could be released and ionized after laser irradiation. This strategy converted the detection of bacteria to the analysis of mass tags, allowing simultaneous detection of multiple bacteria and avoiding the dependence of microbial mass spectra databases. In addition, this approach applied two rolling circle amplification (RCA) reactions to improve both the capture efficiency and detection sensitivity of the target bacteria. The specificity and the real sample detection were evaluated, and the results demonstrated a potential application of this approach in milk safety monitoring.


Assuntos
Bactérias , Leite , Animais , Bactérias/genética , Leite/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
19.
Cell Biol Int ; 46(3): 336-343, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34941001

RESUMO

Osteosarcoma is a malignant tumor that often occurs in adolescents. There is an urgent need for new treatment options for osteosarcoma due to its poor prognosis after metastasis. Cancer stem cell (CSC) theory states that CSCs represent a small proportion of cancer cells. These CSC have self-renewal ability and are closely associated with cancer growth and metastasis as well as chemotherapy resistance. Similarly, osteosarcoma stem cells (OSCs) play an important role in the growth, metastasis, and chemotherapy resistance of osteosarcoma cells. Targeting OSCs may represent a future treatment of osteosarcoma. Furthermore, some genes have been shown to regulate the growth, metastasis, and chemotherapy resistance of osteosarcoma cells by altering the stemness of OSCs. Targeting these genes may help in the treatment of osteosarcoma. This review mainly discusses recent advances in the research of OSCs and their related genes.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adolescente , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Células-Tronco Neoplásicas/patologia , Osteossarcoma/patologia
20.
Biomedicines ; 11(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36672541

RESUMO

Osteoporosis, a systemic bone disease, is characterized by decreased bone density due to various reasons, destructed bone microstructure, and increased bone fragility. The incidence of osteoporosis is very high among the elderly, and patients with osteoporosis are prone to suffer from spine fractures and hip fractures, which cause great harm to patients. Meanwhile, osteoporosis is mainly treated with anti-osteoporosis drugs that have side effects. Therefore, the development of new treatment modalities has a significant clinical impact. Sympathetic nerves play an important role in various physiological activities and the regulation of osteoporosis as well. Therefore, the role of sympathetic nerves in osteoporosis was reviewed, aiming to provide information for future targeting of sympathetic nerves in osteoporosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...