Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(7): 10931-10942, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35849553

RESUMO

Maximizing the tissue-targeting efficiency of nanomaterials while also protecting them from rapid clearance from the bloodstream and limiting their immunogenicity remains a central problem in the field of systemic-administered nanomedicine. Herein, we introduce a generalizable strategy to simultaneously increase tumor accumulation, prolong blood circulation, and limit nonspecific immune activation of nanomaterials via peptide-based, tumor-responsive, "sheddable" coatings. Spherical nucleic acids (SNAs) were designed and synthesized to contain an exterior coating composed of zwitterionic polypeptides with recognition sequences for tumor-associated proteases. In the presence of matrix metalloproteinases (MMPs), the polypetide coating is rapidly cleaved, leading to increased cellular uptake of these SNAs, relative to SNAs containing nonsheddable shells. Moreover, the zwitterionic nature of the polypeptide shell shields the SNAs from immune system recognition, which extends their blood circulation time and improves tumor accumulation and in vivo cellular uptake relative to control SNAs with no protective coating. Taken together, these results indicate that this strategy is a viable method for increasing nanoparticle tumor accumulation and can have utility for the systemic delivery of oligonucleotides and nanomaterials to target cells in vivo with low immunogenicity.


Assuntos
Nanopartículas , Neoplasias , Ácidos Nucleicos , Humanos , Nanomedicina/métodos , Oligonucleotídeos , Peptídeos
2.
ACS Appl Mater Interfaces ; 13(39): 46325-46333, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34547202

RESUMO

Liposomal spherical nucleic acids (LSNAs) modified with polyethylene glycol (PEG) units are studied in an attempt to understand how the circulation time and biodistribution of the constructs can be manipulated. Specifically, the effect of (1) PEG molecular weight, (2) PEG shell stability, and (3) PEG modification method (PEG in both the core and shell versus PEG in the shell only) on LSNA blood circulation, biodistribution, and in vivo cell internalization in a syngeneic, orthotopic triple-negative breast cancer mouse model is studied. Generally, high PEG molecular weight extends blood circulation lifetime, and a more lipophilic anchor stabilizes the PEG shell and improves circulation and tumor accumulation but at the cost of cell uptake efficiency. The PEGylation strategy has a minor effect on in vitro properties of LSNAs but significantly alters in vivo cell uptake. For example, surface-only PEG in one design contributed to higher in vivo cell internalization than its counterpart with PEG both in the shell and core. Taken together, this work provides guidelines for designing LSNAs that exhibit maximal in vivo cancer cell uptake characteristics in the context of a breast cancer model.


Assuntos
Ácidos Nucleicos Imobilizados/metabolismo , Lipossomos/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , Polietilenoglicóis/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/farmacocinética , Lipossomos/química , Lipossomos/farmacocinética , Camundongos Endogâmicos BALB C , Peso Molecular , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacocinética , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacocinética , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Distribuição Tecidual
3.
ACS Cent Sci ; 5(12): 1983-1990, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31893228

RESUMO

Spherical nucleic acids (SNAs) are nanomaterials typically consisting of a nanoparticle core and a functional, dense, and highly oriented oligonucleotide shell with unusual biological properties that make them appealing for many applications, including sequence-specific gene silencing, mRNA quantification, and immunostimulation. When placed in biological fluids, SNAs readily interact with serum proteins, leading to the formation of ill-defined protein coronae on the surface, which can influence the targeting capabilities of the conjugate. In this work, SNAs were designed and synthesized with functional proteins, such as antibodies and serum albumin, deliberately adsorbed onto their surfaces. These particles exhibit increased resistance to protease degradation compared with native SNAs but still remain functional, as they can engage in hybridization with complementary oligonucleotides. SNAs with adsorbed targeting antibodies exhibit improved cellular selectivity within mixed cell populations. Similarly, SNAs coated with the dysopsonizing protein serum albumin show reduced macrophage uptake, providing a strategy for tailoring selective SNA delivery. Importantly, the protein coronae remain stable on the SNAs in human serum, exhibiting a less than 45% loss of protein through exchange after 12 h at 37 °C. Taken together, these results show that protein-SNA complexes and the method used to prepare them provide a new avenue for enhancing SNA stability, targeting, and biodistribution.

5.
Anal Chem ; 89(15): 7943-7949, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633520

RESUMO

Ion-selective optodes (ISOs), the optical analog of ion-selective electrodes, have played an increasingly important role in chemical and biochemical analysis. Here we extend this technique to ion-selective photoacoustic optodes (ISPAOs) that serve at the same time as fluorescence-based ISOs, and apply it specifically to potassium (K+). Notably, the potassium ion is one of the most abundant cations in biological systems, involved in numerous physiological and pathological processes. Furthermore, it has been recently reported that the presence of abnormal extracellular potassium concentrations in tumors suppresses the immune responses and thus suppresses immunotherapy. However, unfortunately, sensors capable of providing potassium images in vivo are still a future proposition. Here, we prepared an ion-selective potassium nanosensor (NS) aimed at in vivo photoacoustic (PA) chemical imaging of the extracellular environment, while being also capable of fluorescence based intracellular ion-selective imaging. This potassium nanosensor (K+ NS) modulates its optical properties (absorbance and fluorescence) according to the potassium concentration. The K+ NS is capable of measuring potassium, in the range of 1 mM to 100 mM, with high sensitivity and selectivity, by ISPAO based measurements. Also, a near infrared dye surface modified K+ NS allows fluorescence-based potassium sensing in the range of 20 mM to 1 M. The K+ NS serves thus as both PA and fluorescence based nanosensor, with response across the biologically relevant K+ concentrations, from the extracellular 5 mM typical values (through PA imaging) to the intracellular 150 mM typical values (through fluorescence imaging).


Assuntos
Nanoestruturas/química , Técnicas Fotoacústicas/métodos , Potássio/análise , Aminas/química , Cátions/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Eletrodos Seletivos de Íons , Micelas , Microscopia de Fluorescência , Poloxâmero/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...