Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Prolif ; : e13635, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594962

RESUMO

Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are the world's leading causes of blindness. The retinal pigment epithelium (RPE) and vascular endothelial cell exposed to oxidative stress is the major cause of AMD and DR. DJ-1, an important endogenous antioxidant, its overexpression is considered as a promising antioxidant treatment for AMD and DR. Here, we modified the tetrahedral frame nucleic acids (tFNAs) with DJ-1 saRNAs as a delivery system, and synthesized a novel nanocomplex (tFNAs-DJ-1 saRNAs). In vitro studies show that tFNAs-DJ-1 saRNAs can efficiently transfer DJ-1 saRNAs to human umbilical vein endothelial cells (HUVECs) and ARPE-19s, and significantly increased their cellular DJ-1 level. Reactive oxygen species expression in H2O2-treated HUVECs and ARPE-19s were decreased, cell viability was enhanced and cell apoptosis were inhibited when tFNAs-DJ-1 saRNAs were delivered. Moreover, tFNAs-DJ-1 saRNAs preserved mitochondrial structure and function under oxidative stress conditions. In the aspect of molecular mechanism, tFNAs-DJ-1 saRNAs activated Erk and Nrf2 pathway, which might contribute to its protective effects against oxidative stress damage. To conclude, this study shows the successfully establishment of a simple but effective delivery system of DJ-1 saRNAs associated with antioxidant effects in AMD and DR, which may be a promising agent for future treatment in oxidative stress-related retinal disorders.

2.
Int J Biol Macromol ; 242(Pt 4): 125141, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247705

RESUMO

Drug delivery systems (DDSs) based on micro-and nano- fibrous membrane have been developed for decades, in which great attention has been focused on achieving controlled drug release. However, the study on the integrated performance of these drug-loaded membranes in the use of in-vitro drug delivery dressing is lacking, as clinical medication also needs consideration from the perspectives of wound safety and patient convenience. Herein, a trilayered hierarchical porous ethyl cellulose (EC) fibrous membrane based DDS (EC-DDS) was developed by electro-centrifugal spinning. Significantly, the hierarchical porous structure of the EC-DDSs with high specific surface area (34.3 m2g-1) and abundant long-regulative micro-and nano- channels demonstrated its merits in improving the hydrophobicity (long-term splash resistance (CA > 130°) and prolonging the drug release (the release time of ~80 % tetracycline hydrochloride (TCH) prolonged from 10 min to 24 h). Meanwhile, the trilayered EC-DDS also revealed excellent biocompatibility, antibacterial activity, air permeability, moisture permeability, water absorption capacity, mechanical strength, and flexibility. With these excellent integrated features, the EC-DDS could prevent external fluids, avoid infection, and provide comfort. Furthermore, this work also provides a new guide for the high-efficiency fabrication of porous fibrous membranes.


Assuntos
Antibacterianos , Sistemas de Liberação de Medicamentos , Humanos , Porosidade , Antibacterianos/farmacologia , Antibacterianos/química , Tetraciclina/farmacologia , Tetraciclina/química
3.
Plants (Basel) ; 12(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37050183

RESUMO

Sorghum bicolor (L.) is one of the oldest crops cultivated by human beings which has been used in food and wine making. To understand the genetic diversity of sorghum breeding resources and further guide molecular-marker-assisted breeding, six yield-related traits were analyzed for 214 sorghum germplasm from all over the world, and 2,811,016 single-nucleotide polymorphisms (SNPs) markers were produced by resequencing these germplasms. After controlling Q and K, QTLs were found to be related to the traits using three algorisms. Interestingly, an important QTL was found which may affect multiple traits in this study. It was the most likely candidate gene for the gene SORBI_3008G116500, which was a homolog of Arabidopsis thaliana gene-VIP5 found by analyzing the annotation of the gene in the LD block. The haplotype analysis showed that the SORBI_3008G116500hap3 was the elite haplotype, and it only existed in Chinese germplasms. The traits were proven to be more associated with the SNPs of the SORBI_3008G116500 promoter through gene association studies. Overall, the QTLs and the genes identified in this study would benefit molecular-assisted yield breeding in sorghum.

4.
J Physiol ; 601(22): 5107-5128, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37078283

RESUMO

Long-term abuse of methamphetamine (MA) can cause lung toxicity. Intercellular communication between macrophages and alveolar epithelial cells (AECs) is critical for maintaining lung homeostasis. Microvesicles (MVs) are an important medium of intercellular communication. However, the mechanism of macrophage MVs (MMVs) in MA-induced chronic lung injury remains unclear. This study aimed to investigate if MA can augment the activity of MMVs and if circ_YTHDF2 is a key factor in MMV-mediated macrophage-AEC communication, and to explore the mechanism of MMV-derived circ_YTHDF2 in MA-induced chronic lung injury. MA elevated peak velocity of the pulmonary artery and pulmonary artery accelerate time, reduced the number of alveolar sacs, thickened the alveolar septum, and accelerated the release of MMVs and the uptake of MMVs by AECs. Circ_YTHDF2 was downregulated in lung and MMVs induced by MA. The immune factors in MMVs were increased by si-circ_YTHDF. Circ_YTHDF2 knockdown in MMVs induced inflammation and remodelling in the internalised AECs by MMVs, which was reversed by circ_YTHDF2 overexpression in MMVs. Circ_YTHDF2 bound specifically to and sponged miRNA-145-5p. Runt-related transcription factor 3 (RUNX3) was identified as potential target of miR-145-5p. RUNX3 targeted zinc finger E-box-binding homeobox 1 (ZEB1)-related inflammation and EMT of AECs. In vivo, circ_YTHDF2 overexpression-MMVs attenuated MA-induced lung inflammation and remodelling by the circ_YTHDF2-miRNA-145-5p-RUNX3 axis. Therefore, MA abuse can induce pulmonary dysfunction and alveolus injury. The immunoactivity of MMVs is regulated by circ_YTHDF2. Circ_YTHDF2 in MMVs is the key to communication between macrophages and AECs. Circ_YTHDF2 sponges miR-145-5p targeting RUNX3 to participate in ZEB1-related inflammation and remodelling of AECs. MMV-derived circ_YTHDF2 would be an important therapeutic target for MA-induced chronic lung injury. KEY POINTS: Methamphetamine (MA) abuse induces pulmonary dysfunction and alveoli injury. The immunoactivity of macrophage microvesicles (MMVs) is regulated by circ_YTHDF2. Circ_YTHDF2 in MMVs is the key to MMV-mediated intercellular communication between macrophages and alveolar epithelial cells. Circ_YTHDF2 sponges miR-145-5p targeting runt-related transcription factor 3 (RUNX3) to participate in zinc finger E-box-binding homeobox 1 (ZEB1)-related inflammation and remodelling. MMV-derived circ_YTHDF2 would be an important therapeutic target for MA-induced chronic lung injury.


Assuntos
Lesão Pulmonar , Metanfetamina , MicroRNAs , Humanos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Metanfetamina/toxicidade , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Fator 3 de Transcrição/metabolismo , Inflamação/metabolismo , Macrófagos , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Apoptose , Proteínas de Ligação a RNA
5.
Plant Commun ; 3(5): 100350, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35733334

RESUMO

Crop wild relatives are an important reservoir of natural biodiversity. However, incorporating wild genetic diversity into breeding programs is often hampered by reproductive barriers and a lack of accurate genomic information. We assembled a high-quality, accurately centromere-anchored genome of Gossypium anomalum, a stress-tolerant wild cotton species. We provided a strategy to discover and transfer agronomically valuable genes from wild diploid species to tetraploid cotton cultivars. With a (Gossypium hirsutum × G. anomalum)2 hexaploid as a bridge parent, we developed a set of 74 diploid chromosome segment substitution lines (CSSLs) of the wild cotton species G. anomalum in the G. hirsutum background. This set of CSSLs included 70 homozygous substitutions and four heterozygous substitutions, and it collectively contained about 72.22% of the G. anomalum genome. Twenty-four quantitative trait loci associated with plant height, yield, and fiber qualities were detected on 15 substitution segments. Integrating the reference genome with agronomic trait evaluation of the CSSLs enabled location and cloning of two G. anomalum genes that encode peroxiredoxin and putative callose synthase 8, respectively, conferring drought tolerance and improving fiber strength. We have demonstrated the power of a high-quality wild-species reference genome for identifying agronomically valuable alleles to facilitate interspecific introgression breeding in crops.


Assuntos
Fibra de Algodão , Gossypium , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Gossypium/genética , Melhoramento Vegetal
6.
J Hazard Mater ; 434: 128858, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35405607

RESUMO

Porous membranes with fascinating super-wettable surface and tunable porous architecture for oil-water separation have been developed rapidly, however, the serious secondary marine pollution caused by the non-degradable defectiveness of membranes themselves is still a thorny problem. Herein, we create an eco-friendly membrane with biomimetic cobweb-like nanostructure via assembling two-dimensional bacterial cellulose nanonets on the starch nanofibrous membrane on a large scale. The obtained novel composite membranes exhibit integrated properties of sub-micron pore size, ultrahigh porosity, superhydrophilicity, and underwater superoleophobicity, stemming from the synergistic effect of the hydrated nanonet-skin-layer and porous starch matrix. By virtue of the narrow-distributed sub-micron pores, ultrahigh porosity, and ultrathin thickness, the resulting membrane shows outstanding performance of excellent separation efficiency (up to 99.996%), high percolation flux (maximum of 15968 L m-2 h-1), well surpassing the conventional microfiltration membranes. More significantly, with the advantage of biodegradability and anti-oil-fouling property, the membrane could serve as the robust platform for long-term wastewater remediation.


Assuntos
Purificação da Água , Biomimética , Membranas Artificiais , Amido , Águas Residuárias , Purificação da Água/métodos
7.
ACS Omega ; 7(9): 7706-7714, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284769

RESUMO

In this research, centrifugally spun ultrafine composite starch/polyvinyl alcohol (ST/PVA) fibers with high water stability were prepared by cross-linking with a mixture of glutaraldehyde and formic acid in the form of vapor phase. The effect of cross-linking temperature combined with time on the water stability, crystal structure, and thermal properties of fibers was investigated to obtain the optimum parameters. On this basis, we further prepared Ag-loaded ST/PVA fibers with different contents of nano silver. The structure and properties of Ag-loaded fibers, which cross-linked under the optimum parameters, were analyzed. As a result, the Ag-loaded fibers exhibited excellent water stability and mechanical properties and possessed inhibition zone diameters of 3 and 2 mm to Escherichia coli and Staphylococcus. aureus, respectively. The antibacterial property of the Ag-loaded ST/PVA fibers provided a new route for developing less costly antibacterial fiber materials in the future.

8.
Org Lett ; 24(1): 22-26, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34911296

RESUMO

Catalytic hydroamination of the readily available alkenes is among the most straightforward means to construct diverse alkyl amines. To this end, the facile access to both regioselectivity, i.e., Markovnikov or anti-Markovnikov hydroamination, with minimum reaction-parameter alternation, remains challenging. Herein, we report a cobalt-catalyzed highly selective and divergent Markovnikov and anti-Markovnikov hydroamination of alkenes, in which the switch of regioselectivity is achieved simply by the variation of the addition sequence of 9-BBN.

9.
BMC Genomics ; 22(1): 26, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407102

RESUMO

BACKGROUND: Cotton is more resistant to salt and drought stresses as compared to other field crops, which makes itself as a pioneer industrial crop in saline-alkali lands. However, abiotic stresses still negatively affect its growth and development significantly. It is therefore important to breed salt tolerance varieties which can help accelerate the improvement of cotton production. The development of molecular markers linked to causal genes has provided an effective and efficient approach for improving salt tolerance. RESULTS: In this study, a genome-wide association study (GWAS) of salt tolerance related traits at seedling stage was performed based on 2 years of phenotype identification for 217 representative upland cotton cultivars by genotyping-by-sequencing (GBS) platform. A total of 51,060 single nucleotide polymorphisms (SNPs) unevenly distributed among 26 chromosomes were screened across the cotton cultivars, and 25 associations with 27 SNPs scattered over 12 chromosomes were detected significantly (-log10p > 4) associated with three salt tolerance related traits in 2016 and 2017. Among these, the associations on chromosome A13 and D08 for relative plant height (RPH), A07 for relative shoot fresh matter weight (RSFW), A08 and A13 for relative shoot dry matter weight (RSDW) were expressed in both environments, indicating that they were likely to be stable quantitative trait loci (QTLs). A total of 12 salt-induced candidate genes were identified differentially expressed by the combination of GWAS and transcriptome analysis. Three promising genes were selected for preliminary function verification of salt tolerance. The increase of GH_A13G0171-silenced plants in salt related traits under salt stress indicated its negative function in regulating the salt stress response. CONCLUSIONS: These results provided important genetic variations and candidate genes for accelerating the improvement of salt tolerance in cotton.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Gossypium/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Tolerância ao Sal/genética
10.
RSC Adv ; 11(43): 27019-27026, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35479984

RESUMO

This paper demonstrates that melt centrifugal spinning could be used to effectively fabricate degradable poly (butylene adipate-co-terephthalate) (PBAT) fibers with uniform fiber diameter. The hydrophobic PBAT fibers were modified into hydrophilic fibers using the hyperbranched polyesters (HBP) with three-dimensional molecular chain structures and a large number of functional groups at the chain ends. The structures and properties of the obtained fibers were characterized with SEM, XRD, DSC, contact angle, and tensile strength analyses. Results indicate that fibers with uniform diameters can be conveniently fabricated by designing a spinneret. The obtained fibers showed no apparent change in crystallization compared to PBAT pellets, while the thermal stability and mechanical properties of PBAT/HBP fibers were dependent on the HBP ratio in fibers. More importantly, the obtained fibers gradually changed from hydrophobic to super-hydrophilic with increasing HBP content in fibers up to 30%. The modified hydrophilic PBAT/HBP presents a greatly significant potential for application in biomedical fields.

11.
Org Biomol Chem ; 18(39): 7740-7750, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32940308

RESUMO

Unlike many other state-of-the-art transition-metal-catalyzed allylic substitutions, cobalt-catalyzed allylic substitution has received much less attention from synthetic chemists for a long time despite the fact that cobalt is an earth-abundant, low-cost and thus much more sustainable option as either a reagent or a catalyst in organic synthesis. Recently, there has been an upsurge in the use of cobalt catalysis in allylic functionalization reactions, including allylic substitution, nucleophilic allylation, and Heck-type allylic functionalization, to construct synthetically significant building blocks featuring a double bond available for diverse downstream synthetic manipulations. This review highlights the current development of cobalt catalysis in allylic functionalization with an in-depth discussion of the reaction scope and mechanistic insights.

12.
Breed Sci ; 70(4): 494-501, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32968353

RESUMO

Gossypium anomalum (B1B1) is a valuable wild resource for the genetic improvement of G. hirsutum (A1A1D1D1) in terms of fiber quality and disease and pest resistance, but the inherent difficulties in distant hybridization hinder its utilization in breeding programs. Monosomic alien addition lines (MAALs) are powerful tools for interspecific gene transfer. First, to access useful genes from G. anomalum, a fertile hexaploid from G. hirsutum × G. anomalum was obtained and then additional chromosomes were selected using SSR markers in successive backcrosses and self-crossing from BC2F1 to BC4F4. Finally, a complete set of 13 MAALs were developed. All the MAALs were confirmed by chromosome-specific anchored SSRs and genome-wide resequencing. The MAALs demonstrated abundant variation in morphological, agronomic, yield-related, and fiber quality traits. MAAL_3B had excellent fiber strength and fineness, indicating that the transmitted chromosome may carry desirable genes for the observed phenotypes. This complete set of MAALs will provide important genetic bridge material for the identification and introgression of favorable genes from G. anomalum and lay an important foundation for the genetic improvement of cotton.

13.
Chem Commun (Camb) ; 56(61): 8512-8523, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32558844

RESUMO

Recent advances in the investigation of cobalt fluorides in organofluorine chemistry are highlighted. The preparation and reactivity of inorganic and organometallic cobalt fluorides are discussed. The in-depth understanding of the structures and reactivity of cobalt fluorides allows chemists to develop diverse innovative catalytic fluorination and C-F functionalization.

14.
Org Lett ; 22(9): 3601-3606, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32307998

RESUMO

A redox neutral radical-relay cobalt-catalyzed intramolecular C-H fluorination of N-fluoroamides featuring the in situ formed cobalt fluorides as the latent radical fluorinating agents is reported. Moreover, the reactivity of such a cobalt catalysis could be diverted from C-H fluorination to amination by engineering substrates' conformational flexibility. Preliminary mechanistic studies (UV-vis spectroscopy, cyclic voltammetry studies and DFT calculations, etc.) support the reaction proceeding a redox neutral radical-relay mechanism.


Assuntos
Cobalto , Halogenação , Aminação , Catálise , Cobalto/química , Estrutura Molecular , Oxirredução
15.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652670

RESUMO

Cotton is one of the most economically important crops in the world, and it is exposed to various abiotic stresses during its lifecycle, especially salt stress. However, the molecular mechanisms underlying cotton tolerance to salt stress are still not fully understood due to the complex nature of salt response. Therefore, identification of salt stress tolerance-related functional genes will help us understand key components involved in stress response and provide valuable genes for improving salt stress tolerance via genetic engineering in cotton. In the present study, virus-induced gene silencing of GhWRKY5 in cotton showed enhanced salt sensitivity compared to wild-type plants under salt stress. Overexpression of GarWRKY5 in Arabidopsis positively regulated salt tolerance at the stages of seed germination and vegetative growth. Additionally, GarWRKY5-overexpressing plants exhibited higher activities of superoxide dismutase (SOD) and peroxidase (POD) under salt stress. The transcriptome sequencing analysis of transgenic Arabidopsis plants and wild-type plants revealed that there was enriched coexpression of genes involved in reactive oxygen species (ROS) scavenging (including glutamine S-transferases (GSTs) and SODs) and altered response to jasmonic acid and salicylic acid in the GarWRKY5-OE lines. GarWRKY5 is involved in salt stress response by the jasmonic acid- or salicylic acid-mediated signaling pathway based on overexpression of GarWRKY5 in Arabidopsis and virus-induced gene silencing of GarWRKY5 in cotton.


Assuntos
Gossypium/genética , Proteínas de Plantas/genética , Estresse Salino , Fatores de Transcrição/genética , Ciclopentanos/metabolismo , Diploide , Gossypium/metabolismo , Oxilipinas/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
16.
Exp Ther Med ; 14(2): 1381-1388, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28810600

RESUMO

Gardenia fruit has been used in traditional Chinese medicine for thousands of years. A previous study by the present authors indicated that the ethanol extract of gardenia fruits (EEG) primarily contains eight constituents. In the present study, the potential effects of EEG on unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis were observed in rats. A total of 30 rats were randomly divided into three groups (n=10 each): Sham group, UUO group, and EEG group, which were administered with EEG (200 mg/kg/day) or the same volume of distilled water as a vehicle. UUO were established by ligating left ureter at two points and cut between the ligatures. All rats were sacrificed at 14 days after UUO operation. the present results demonstrated that EEG significantly elevated the expressions of vascular endothelial growth factor and E-cadherin induced by UUO (both P<0.05), and reduced levels of hypoxia-inducible factor-1α, transforming growth factor-ß1, connective tissue growth factor and α-smooth muscle actin (all P<0.05). The present findings suggest that EEG is a potential novel renoprotective compound for renal fibrosis through inhibiting epithelial-to-mesenchymal transition.

17.
Database (Oxford) ; 2017(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365739

RESUMO

Although several diploid and tetroploid Gossypium species genomes have been sequenced, the well annotated web-based transposable elements (TEs) database is lacking. To better understand the roles of TEs in structural, functional and evolutionary dynamics of the cotton genome, a comprehensive, specific, and user-friendly web-based database, Gossypium raimondii transposable elements database (GrTEdb), was constructed. A total of 14 332 TEs were structurally annotated and clearly categorized in G. raimondii genome, and these elements have been classified into seven distinct superfamilies based on the order of protein-coding domains, structures and/or sequence similarity, including 2929 Copia-like elements, 10 368 Gypsy-like elements, 299 L1 , 12 Mutators , 435 PIF-Harbingers , 275 CACTAs and 14 Helitrons . Meanwhile, the web-based sequence browsing, searching, downloading and blast tool were implemented to help users easily and effectively to annotate the TEs or TE fragments in genomic sequences from G. raimondii and other closely related Gossypium species. GrTEdb provides resources and information related with TEs in G. raimondii , and will facilitate gene and genome analyses within or across Gossypium species, evaluating the impact of TEs on their host genomes, and investigating the potential interaction between TEs and protein-coding genes in Gossypium species. Database URL: http://www.grtedb.org/.


Assuntos
Elementos de DNA Transponíveis , Bases de Dados de Ácidos Nucleicos , Diploide , Genoma de Planta , Gossypium/genética , Internet , Tetraploidia , DNA de Plantas/genética , Navegador
18.
Theor Appl Genet ; 130(6): 1309-1319, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28361363

RESUMO

KEY MESSAGE: A fiber length QTL, qFL-chr1, was fine mapped to a 0.9 cM interval of cotton chromosome 1. Two positional candidate genes showed positive correlation between gene expression level and fiber length. Prior analysis of a backcross-self mapping population derived from a cross between Gossypium hirsutum L. and G. barbadense L. revealed a QTL on chromosome 1 associated with increased fiber length (qFL-chr1), which was confirmed in three independent populations of near-isogenic introgression lines (NIILs). Here, a single NIIL, R01-40-08, was used to develop a large population segregating for the target region. Twenty-two PCR-based polymorphic markers used to genotype 1672 BC4F2 plants identified 432 recombinants containing breakpoints in the target region. Substitution mapping using 141 informative recombinants narrowed the position of qFL-chr1 to a 1.0-cM interval between SSR markers MUSS084 and CIR018. To exclude possible effects of non-target introgressions on fiber length, different heterozygous BC4F3 plants introgressed between SSR markers NAU3384 and CGR5144 were selected to develop sub-NILs. The qFL-chr1 was further mapped at 0.9-cM interval between MUSS422 and CIR018 by comparisons of sub-NIL phenotype, and increased fiber length by ~1 mm. The 2.38-Mb region between MUSS422 and CIR018 in G. barbadense contained 19 annotated genes. Expression levels of two of these genes, GOBAR07705 (encoding 1-aminocyclopropane-1-carboxylate synthase) and GOBAR25992 (encoding amino acid permease), were positively correlated with fiber length in a small F2 population, supporting these genes as candidates for qFL-chr1.


Assuntos
Mapeamento Cromossômico , Fibra de Algodão , Gossypium/genética , Locos de Características Quantitativas , Sistemas de Transporte de Aminoácidos/genética , Genes de Plantas , Marcadores Genéticos , Genótipo , Liases/genética , Fenótipo
19.
Theor Appl Genet ; 128(8): 1531-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957115

RESUMO

KEY MESSAGE: We reported the first development of Gossypium anomalum -derived microsatellite markers and identification of recombination between sexually incompatible species by a synthesized hexaploid on genome level. To continue to develop improved cotton varieties, it is essential to transfer desired characters from diploid wild cotton species such as Gossypium anomalum to cultivated allotetraploid cotton species. However, interspecific reproductive barriers limit gene transfer between species. In a previous study, we used colchicine treatment to produce a synthesized hexaploid derived from an interspecific hybrid between Gossypium hirsutum and G. anomalum and demonstrated its hybridity and doubled status using morphological, cytological and molecular marker methods. In the current study, to effectively monitor G. anomalum genome components in the G. hirsutum background, we developed 5974 non-redundant G. anomalum-derived SSR primer pairs using RNA-Seq technology, which were combined with a publicly available physical map. Based on this combined map and segregation data from the BC2F1 population, we identified a set of 230 informative G. anomalum-specific SSR markers distributed on the chromosomes, which cover 95.72% of the cotton genome. After analyzing BC2F1 segregation data, 50 recombination types from 357 recombination events were identified, which cover 81.48% of the corresponding G. anomalum genome. A total of 203 recombination events occurred on chromosome 11, accounting for 56.86% of the recombination events on all chromosomes. Recombination hotspots were observed at marker intervals JAAS1148-NAU5100 on chromosome 1 and JAAS0426-NAU998 on chromosome 2. Therefore, all G. anomalum chromosomes are capable of recombining with At chromosomes in G. hirsutum. This study represents an important step towards introgressing desirable traits into cultivated cotton from the wild cotton species G. anomalum.


Assuntos
Genoma de Planta , Gossypium/genética , Repetições de Microssatélites , Recombinação Genética , Quimera , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas/genética , Biblioteca Gênica , Marcadores Genéticos , Gossypium/classificação , Poliploidia
20.
PLoS One ; 10(5): e0126148, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25951083

RESUMO

WRKY transcription factors are plant-specific, zinc finger-type transcription factors. The WRKY superfamily is involved in abiotic stress responses in many crops including cotton, a major fiber crop that is widely cultivated and consumed throughout the world. Salinity is an important abiotic stress that results in considerable yield losses. In this study, we identified 109 WRKY genes (GarWRKYs) in a salt-tolerant wild cotton species Gossypium aridum from transcriptome sequencing data to elucidate the roles of these factors in cotton salt tolerance. According to their structural features, the predicted members were divided into three groups (Groups I-III), as previously described for Arabidopsis. Furthermore, 28 salt-responsive GarWRKY genes were identified from digital gene expression data and subjected to real-time quantitative RT-PCR analysis. The expression patterns of most GarWRKY genes revealed by this analysis are in good agreement with those revealed by RNA-Seq analysis. RT-PCR analysis revealed that 27 GarWRKY genes were expressed in roots and one was exclusively expressed in roots. Analysis of gene orthology and motif compositions indicated that WRKY members from Arabidopsis, rice and soybean generally shared the similar motifs within the same subgroup, suggesting they have the similar function. Overexpression-GarWRKY17 and -GarWRKY104 in Arabidopsis revealed that they could positively regulate salt tolerance of transgenic Arabidopsis during different development stages. The comprehensive data generated in this study provide a platform for elucidating the functions of WRKY transcription factors in salt tolerance of G. aridum. In addition, GarWRKYs related to salt tolerance identified in this study will be potential candidates for genetic improvement of cultivated cotton salt stress tolerance.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/genética , Família Multigênica , Sais , Transcriptoma , Mapeamento Cromossômico , Filogenia , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...