Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(30): e2301622120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459527

RESUMO

Potassium vanadium fluorophosphate (KVPO4F) is regarded as a promising cathode candidate for potassium-ion batteries due to its high working voltage and satisfactory theoretical capacity. However, the usage of electrochemically inactive binders and redundant current collectors typically results in inferior electrochemical performance and low energy density, thus implying the important role of rational electrode structure design. Herein, we have reported a scalable and cost-effective synthesis of a cellulose-derived KVPO4F self-supporting electrode, which features a special surface hydroxyl chemistry, three-dimensional porous and conductive framework, as well as super flexible and stable architecture. The cellulose not only serves as a flexible substrate, a pore-forming agent, and a versatile binder for KVPO4F/conductive carbon but also enhances the K-ion migration ability. Benefiting from the special hydroxyl chemistry-induced storage mechanism and electrode structural stability, the flexible freestanding KVPO4F cathode exhibits high-rate performance (53.0% capacity retention with current densities increased 50-fold, from 0.2 C to 10 C) and impressive cycling stability (capacity retention up to 74.9% can be achieved over 1,000 cycles at a rate of 5 C). Such electrode design and surface engineering strategies, along with a deeper understanding of potassium storage mechanisms, provide invaluable guidance for better electrode design to boost the performance of potassium-ion energy storage systems.

2.
ACS Appl Mater Interfaces ; 14(8): 10419-10427, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179367

RESUMO

Although aqueous zinc-ion batteries (AZIBs) promise high capacity, low cost, and environmental friendliness, the Zn metal anode suffers from limited reversibility and unsatisfied lifespan arising from severe dendritic growth and inevitable interfacial corrosion. In this regard, constructing the artificial protective interfacial layer on the Zn metal foil has been recognized as an effective strategy to realize durable AZIBs. Inspired by the phytic acid (PA) anticorrosion conversion coating layer for industrial metal protection, herein, we designed a dense and conformal PA-Zn complex layer on the Zn anodes through a feasible, rapid wet-chemistry chelating reaction. The in situ formed uniform PA-Zn coating layer on the surface of Zn anodes can serve as a protective layer inhibiting corrosion reaction. More importantly, the desolvation energy of Zn2+ is effectively reduced by the PA-Zn layer, which gives rise to enhanced kinetics of Zn plating/stripping for uniform Zn deposition. Consequently, the PA-Zn metal anode delivered a low overpotential of 36 mV and a long lifespan over 1400 h at 2 mA cm-2 with a capacity of 1 mA h cm-2. The feasibility of PA-Zn anodes is also verified in the as-constructed PANI@V2O5||Zn full cells. This work paves the way for designing a multifunctional interface layer on Zn metal and promotes the development of high-performance AZIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...