Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kaohsiung J Med Sci ; 36(9): 673-681, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32319222

RESUMO

MC3T3-E1 cells were divided into Blank, miR-135b mimics, miR-135b inhibitors, AG490, and miR-135b inhibitors + AG490 groups. Cell viability was determined by MTT, alkaline phosphatase (ALP) activity by the corresponding kit, and mineralization by alizarin red staining. Furthermore, miR-135b, osteoblast-specific genes, and JAK2/STAT3 were detected through quantitative real-time polymerase chain reaction and Western blotting. MiR-135b downregulation was identified with increased JAK2 during osteoblast differentiation. JAK2 was confirmed as a target gene of miR-135b by dual-luciferase reporter assay. MC3T3-E1 cells in both miR-135b mimics and AG490 groups manifested decrease in cell viability, ALP activity, and mineralized nodes, as well as reductions in osteoblast-specific genes and proteins of JAK2, p-JAK2, and p-STAT3, but increase in cell apoptosis. However, opposite changes of the above factors were shown in cells from miR-135b inhibitors group. Notably, AG490 could reverse promotion effects of miR-135b inhibitors on osteoblast differentiation. Inhibiting miR-135b could activate the JAK2/STAT3 signaling pathway, thereby improving the cell viability and promoting the osteoblast differentiation.


Assuntos
Janus Quinase 2/genética , MicroRNAs/genética , Osteoblastos/metabolismo , Osteogênese/genética , Fator de Transcrição STAT3/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Antagomirs/genética , Antagomirs/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Tirfostinas/farmacologia
2.
ACS Sens ; 2(5): 687-694, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28723170

RESUMO

A multiple-anchored fluorescent probe ((((hexane-1,6-diylbis(2,7-bis(4-formyl)-phenyl)-9H-fluorine-9,9-diyl))-bis(hexane-6,1-diyl))-bis(9H-carbazole-9,3,6-triyl))-tetrakis(benzene-4,1-diyl))-tetraformyl-(8FP-2F) with eight aldehyde groups was designed and synthesized. The molecule has four branches and highly twisted structure. Furthermore, it tends to self-assemble into nanospheres, which is beneficial for gaseous analyte penetration and high fluorescence quantum efficiency. Among gaseous analytes, detection of aniline vapor is extraordinarily important in the control of environmental issues and human diseases. Herein, 8FP-2F was introduced to detect aniline vapor with distinguished sensitivity and selectivity via simple Schiff base reaction at room temperature. After exposure to saturate aniline vapor, the 89% fluorescence of 8FP-2F was quenched in 50 s and the detection limit was as low as 3 ppb. Further study showed the suitable HOMO/LUMO energy levels and matched orbital symmetry between probe and aniline molecules ensured chemical reaction and PET process work together. The synergistic effect resulted in a significant sensing performance and fluorescence quenching toward aniline vapor. Moreover, the multiple active sites structure of 8FP-2F means it could be applied for constructing many interesting structures and highly efficient organic optoelectronic functional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...