Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Clin Transl Oncol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031295

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is characterized by a complex pathogenesis that confers aggressive malignancy, leading to a lack of dependable biomarkers for predicting invasion and metastasis, which results in poor prognoses in patients with HCC. Glycogen storage disease (GSD) is an uncommon metabolic disorder marked by hepatomegaly and liver fibrosis. Notably, hepatic adenomas in GSD patients present a heightened risk of malignancy compared to those in individuals without the disorder. In this investigation, PON1 emerged as a potential pivotal gene for HCC through bioinformatics analysis. METHODS: Transcriptomic profiling data of liver cancer were collected and integrated from TCGA and GEO databases. Bioinformatics analysis was conducted to identify mutated mRNAs associated with GSD, and the PON1 gene was selected as a key gene. Patients were grouped based on the expression levels of PON1, and differences in clinical characteristics, biological pathways, immune infiltration, and expression of immune checkpoints were compared. RESULTS: The expression levels of the PON1 gene showed significant differences between the high-expression group and the low-expression group in HCC patients. Further analysis indicated that the PON1 gene at different expression levels might influence the clinical manifestations, biological processes, immune infiltration, and expression of immune checkpoints in HCC. Additionally, immunohistochemistry (IHC) results revealed high expression of PON1 in normal tissues and low expression in HCC tissues. These findings provide important clues and future research directions for the early diagnosis, prognosis, immunotherapy, and potential molecular interactions of HCC. CONCLUSION: Our investigation underscores the noteworthy prognostic significance of PON1 in HCC, suggesting its potential pivotal role in modulating tumor progression and immune cell infiltration. These findings establish PON1 as a novel tumor biomarker with significant implications for the prognosis, targeted therapy, and immunotherapy of patients with HCC.

2.
Water Res ; 260: 121948, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38906082

RESUMO

Harmful algal blooms pose tremendous threats to ecological safety and human health. In this study, simulated solar light (SSL) irradiation was used to activate periodate (PI) for the inactivation of Microcystis aeruginosa and degradation of microcystin-LR (MC-LR). We found that PI-SSL system could effectively inactivate 5 × 106 cells·mL-1 algal cells below the limit of detection within 180 min. ·OH and iodine (IO3· and IO4·) radicals generated in PI-SSL system could rupture cell membranes, releasing intracellular substances including MC-LR into the reaction system. However, the released MC-LR could be degraded into non-toxic small molecules via hydroxylation and ring cleavage processes in PI-SSL system, reducing their environmental risks. High algae inactivation performance of PI-SSL system in solution with a wide pH range (3-9), with the coexisting anions (Cl-, NO3- and SO42-) and the copresence of natural organic matters (humic acid and fulvic acid), real water (lake water and river water), as well as in continuous-flow reactor (14 h) were also achieved. In addition, under natural sunlight irradiation, effective algae inactivation could also be achieved in an enlarged reactor (1 L). Overall, our study showed that PI-SSL system could avoid the inference by the background substances and could be employed as a feasible technique to treat algal bloom water.

3.
Sci Total Environ ; 942: 173834, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38851354

RESUMO

Developing technologies aimed at ecologically restoring is of great significance in addressing the problem of heavy metal pollution. In this study, NaA zeolites (FAZ) originated from fly ash with outstanding performance were prepared by alkali fusion hydrothermal method and used for the solidification and stabilization of heavy metals in soil. After systematic evaluation, it was found that FAZ may lower the leaching concentration of lead (Pb) in soil to <1 mg/kg and increase the stabilization rate of Pb to 80 % in the single Pb-contaminated soil, lower the leaching concentration of cadmium (Cd) in soil to <3 mg/kg and increase the stabilization rate of Cd to 60 % in the single Cd-contaminated soil, and lower the leaching concentration of Pb to 0.15 mg/kg and the leaching concentration of Cd to 0.74 mg/kg in PbCd complex polluted soil. Additionally, Pb stabilization rates reach 60 % and Cd stabilization rates reach 30 %, respectively. Ion exchange is primarily responsible for the adsorption and solidification of Pb and Cd in soil by FAZ. Generally, FAZ has a wide range of applications in the rehabilitation of contaminated soil and significantly lowers the level of heavy metal pollution in soil.

4.
Sci Technol Adv Mater ; 25(1): 2357062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835629

RESUMO

Affordable and environmentally friendly electrochemically active raw energy storage materials are in high demand to switch to mass-scale renewable energy. One particularly promising avenue is the feasibility of utilizing food waste-derived nanoporous carbon. This material holds significance due to its widespread availability, affordability, ease of processing, and, notably, its cost-free nature. Over the years, various strategies have been developed to convert different food wastes into nanoporous carbon materials with enhanced electrochemical properties. The electrochemical performance of these materials is influenced by both intrinsic factors, such as the composition of elements derived from the original food sources and recipes, and extrinsic factors, including the conditions during pyrolysis and activation. While current efforts are dedicated to optimizing process parameters to achieve superior performance in electrochemical energy storage devices, it is timely to take stock of the current state of research in this emerging field. This review provides a comprehensive overview of recent developments in the fabrication and surface characterisation of porous carbons from different food wastes. A special focus is given on the applications of these food waste derived porous carbons for energy storage applications including batteries and supercapacitors.


This review compiles very recent literature on the synthesis of porous carbon from food waste biomass and their efficient utilisation as electrode material for energy storage applications in supercapacitor devices.

5.
Aging (Albany NY) ; 16(10): 8772-8809, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38771130

RESUMO

Immunotherapy has been a remarkable clinical advancement in cancer treatment, but only a few patients benefit from it. Metabolic reprogramming is tightly associated with immunotherapy efficacy and clinical outcomes. However, comprehensively analyzing their relationship is still lacking in lung adenocarcinoma (LUAD). Herein, we evaluated 84 metabolic pathways in TCGA-LUAD by ssGSEA. A matrix of metabolic pathway pairs was generated and a metabolic pathway-pair score (MPPS) model was established by univariable, LASSO, multivariable Cox regression analyses. The differences of metabolic reprogramming, tumor microenvironment (TME), tumor mutation burden and drug sensitivity in different MPPS groups were further explored. WGCNA and 117 machine learning algorithms were performed to identify MPPS-related genes. Single-cell RNA sequencing and in vitro experiments were used to explore the role of C1QTNF6 on TME. The results showed MPPS model accurately predicted prognosis and immunotherapy efficacy of LUAD patients regardless of sequencing platforms. High-MPPS group had worse prognosis, immunotherapy efficacy and lower immune cells infiltration, immune-related genes expression and cancer-immunity cycle scores than low-MPPS group. Seven MPPS-related genes were identified, of which C1QTNF6 was mainly expressed in fibroblasts. High C1QTNF6 expression in fibroblasts was associated with more infiltration of M2 macrophage, Treg cells and less infiltration of NK cells, memory CD8+ T cells. In vitro experiments validated silencing C1QTNF6 in fibroblasts could inhibit M2 macrophage polarization and migration. The study depicted the metabolic landscape of LUAD and constructed a MPPS model to accurately predict prognosis and immunotherapy efficacy. C1QTNF6 was a promising target to regulate M2 macrophage polarization and migration.


Assuntos
Adenocarcinoma de Pulmão , Imunoterapia , Neoplasias Pulmonares , Análise de Célula Única , Microambiente Tumoral , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/metabolismo , Imunoterapia/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Prognóstico , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Análise de Sequência de RNA , Regulação Neoplásica da Expressão Gênica , Redes e Vias Metabólicas/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
6.
Neuroendocrinology ; 114(5): 411-422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38228117

RESUMO

INTRODUCTION: Aging is characterized by the deterioration of a wide range of functions in tissues and organs, and Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Hypothyroidism occurs when there is insufficient production of thyroid hormones (THs) by the thyroid. The relationship between hypothyroidism and aging as well as AD is controversial at present. METHODS: We established an animal model of AD (FAD4T) with mutations in the APP and PSEN1 genes, and we performed a thyroid function test and RNA sequencing (RNA-Seq) of the thyroid from FAD4T and naturally aging mice. We also studied gene perturbation correlation in the FAD4T mouse thyroid, bone marrow, and brain by further single-cell RNA sequencing (scRNA-seq) data of the bone marrow and brain. RESULTS: In this study, we found alterations in THs in both AD and aging mice. RNA-seq data showed significant upregulation of T-cell infiltration- and cell proliferation-related genes in FAD4T mouse thyroid. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that upregulated genes were enriched in the functional gene modules of activation of immune cells. Downregulated energy metabolism-related genes were prominent in aging thyroids, which reflected the reduction in THs. GSEA showed a similar enrichment tendency in both mouse thyroids, suggesting their analogous inflammation state. In addition, the regulation of leukocyte activation and migration was a common signature between the thyroid, brain, and bone marrow of FAD4T mice. CONCLUSIONS: Our findings identified immune cell infiltration of the thyroid as the potential underlying mechanism of the alteration of THs in AD and aging.


Assuntos
Envelhecimento , Doença de Alzheimer , Modelos Animais de Doenças , Presenilina-1 , Hormônios Tireóideos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Envelhecimento/metabolismo , Camundongos , Hormônios Tireóideos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Glândula Tireoide/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Masculino
7.
Small ; 19(41): e2302875, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309270

RESUMO

Due to the depletion of fossil fuels and their-related environmental issues, sustainable, clean, and renewable energy is urgently needed to replace fossil fuel as the primary energy resource. Hydrogen is considered as one of the cleanest energies. Among the approaches to hydrogen production, photocatalysis is the most sustainable and renewable solar energy technique. Considering the low cost of fabrication, earth abundance, appropriate bandgap, and high performance, carbon nitride has attracted extensive attention as the catalyst for photocatalytic hydrogen production in the last two decades. In this review, the carbon nitride-based photocatalytic hydrogen production system, including the catalytic mechanism and the strategies for improving the photocatalytic performance is discussed. According to the photocatalytic processes, the strengthened mechanism of carbon nitride-based catalysts is particularly described in terms of boosting the excitation of electrons and holes, suppressing carriers recombination, and enhancing the utilization efficiency of photon-excited electron-hole. Finally, the current trends related to the screening design of superior photocatalytic hydrogen production systems are outlined, and the development direction of carbon nitride for hydrogen production is clarified.

8.
Front Microbiol ; 14: 1156176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138627

RESUMO

Introduction: In 2019, China experienced massive dengue outbreaks with high incidence and expanded outbreak areas. The study aims to depict dengue's epidemiology and evolutionary dynamics in China and explore the possible origin of these outbreaks. Methods: Records of confirmed dengue cases in 2019 were obtained from the China Notifiable Disease Surveillance System. The sequences of complete envelope gene detected from the outbreak provinces in China in 2019 were retrieved from GenBank. Maximum Likelihood trees were constructed to genotype the viruses. The median-joining network was used to visualize fine-scale genetic relationships. Four methods were used to estimate the selective pressure. Results: A total of 22,688 dengue cases were reported, 71.4% of which were indigenous cases and 28.6% were imported cases (including from abroad and from other domestic provinces). The abroad cases were predominantly imported from Southeast Asia countries (94.6%), with Cambodia (3,234 cases, 58.9%), and Myanmar (1,097 cases, 20.0%) ranked as the top two. A total of 11 provinces with dengue outbreaks were identified in the central-south of China, of which Yunnan and Guangdong provinces had the highest number of imported and indigenous cases. The primary source of imported cases in Yunnan was from Myanmar, while in the other ten provinces, the majority of imported cases were from Cambodia. Guangdong, Yunnan and Guangxi provinces were China's primary sources of domestically imported cases. Phylogenetic analysis of the viruses in outbreak provinces revealed three genotypes: (I, IV, and V) in DENV 1, Cosmopolitan and Asian I genotypes in DENV 2, and two genotypes (I and III) in DENV 3. Some genotypes concurrently circulated in different outbreak provinces. Most of the viruses were clustered with those from Southeast Asia. Haplotype network analysis showed that Southeast Asia, possibly Cambodia and Thailand, was the respective origin of the viruses in clade 1 and 4 for DENV 1. Positive selection was detected at codon 386 in clade 1. Conclusion: Dengue importation from abroad, especially from Southeast Asia, resulted in the dengue epidemic in China in 2019. Domestic transmission between provinces and positive selection on virus evolution may contribute to the massive dengue outbreaks.

9.
J Environ Manage ; 335: 117579, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36854235

RESUMO

The construction of an efficient monitoring network is critical for the effective and safe management of urban drainage systems. This study developed a re-clustering methodology that incorporates additional perspectives beyond node similarity to improve the traditional clustering process for optimal sensor placement. Instead of targeting event-specific water quality or hydraulic monitoring, the method integrates the water hydraulic and quality characteristics of nodes in response to the demand for routine monitoring. The implementation of this method first applies model simulation to generate the attribute datasets required for clustering analysis, and then re-clusters the initial clustering result according to the constructed re-clustering potential indices. And the information theory-based evaluation metrics were introduced to quantitatively assess the sensor deployment scheme obtained by amalgamating the two clustering results. Two networks with different drainage systems and sizes were chosen as case studies to illustrate the application of the framework. The results demonstrate that the clustering process enables to expand the information contained in the monitoring network, and that the re-clustering strategy can generate more comprehensive and practical solutions upon this basis.


Assuntos
Qualidade da Água , Simulação por Computador , Análise por Conglomerados
10.
J Environ Manage ; 328: 116894, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36527804

RESUMO

Combing the assisted dispersion strategy of support with the wet chemical reduction method, a novel nano-zero valent iron/microsilica (nZVI/M) composite was successfully fabricated, where the 2D nZVI nanosheets were uniformly anchored and covered on the surface of microsilica. The introduction of microsilica notably relieved the agglomeration effect of nZVI nanosheets, which induced the improvement of specific surface area (45.68 m2/g) and pore volume (0.172 cm3/g), and thereby exposing more active sites for bisphenol A (BPA) removal. The optimized nZVI/M-0.6 displayed the superior catalytic performance in the presence of peroxymonosulfate (PMS) with the degradation rate of BPA reached above 97% within 3 min and a higher constant rate of 0.659 min-1, which was approximately 3.9 times as high as that of nZVI/PMS system. The homogeneously dispersion of nZVI nanosheets on microsilica benefited for the assembly of the pollutants and boosting the kinetics of the catalytic degradation process. As a highly efficient PMS activator, it could well maintain the catalytic activity in different real water samples. The quenching experiments verified that SO4•- played the dominate role for BPA removal. This work offered novel insights for designing and preparing iron-based persulfate activator for wastewater treatment.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Poluentes Químicos da Água/química , Fenóis
11.
Small ; 18(52): e2204793, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344427

RESUMO

Single-atom catalysts (SACs) feature maximum atomic utilization efficiency; however, the loading amount, dispersibility, synthesis cost, and regulation of the electronic structure are factors that need to be considered in water treatment. In this study, kaolinite, a natural layered clay mineral, is applied as the support for g-C3 N4 and single Fe atoms (FeSA-NGK). The FeSA-NGK composite exhibits an impressive degradation performance toward the target pollutant (>98% degradation rate in 10 min), and catalytic stability across consecutive runs (90% reactivity maintained after three runs in a fluidized-bed catalytic unit) under peroxymonosulfate (PMS)/visible light (Vis) synergetic system. The introduction of kaolinite promotes the loading amount of single Fe atoms (2.57 wt.%), which is a 14.2% increase compared to using a bare catalyst without kaolinite, and improved the concentration of N vacancies, thereby optimizing the regulation of the electronic structure of the single Fe atoms. It is discovered that the single Fe atoms successfully occupied five coordinated N atoms and combined with a neighboring N vacancy. Consequently, this regulated the local electronic structure of single Fe atoms, which drives the electrons of N atoms to accumulate on the Fe centers. This study opens an avenue for the design of clay-based SACs for water purification.


Assuntos
Ferro , Caulim , Ferro/química , Argila , Oxirredução
12.
J Oncol ; 2022: 8545441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36317123

RESUMO

Our study aimed to elucidate the function of IMP U3 small nucleolar ribonucleoprotein 4 (IMP4) in lung adenocarcinoma (LUAD) and its potential molecular mechanisms. Cell counting kit-8, 5-ethynyl-20-deoxyuridine, flow cytometry, wound healing, and transwell assays were performed to examine the biological behaviour of LUAD cells. mRNA and protein expression levels were determined using quantitative real-time PCR, Western blotting, and immunohistochemistry. In addition, a mouse tumour xenograft model was used to evaluate the role of IMP4 in tumour progression. Furthermore, glycolysis-related indicators were measured. The levels of IMP4 were up-regulated in both human LUAD tissues and cells. IMP4 silencing significantly suppressed proliferation, migration, invasion, and glycolysis; promoted apoptosis; and induced cell cycle arrest in LUAD cells. IMP4 silencing also inactivated the extracellular signal-regulated kinase (ERK) pathway. Moreover, rescue experiments demonstrated that the function of LUAD cells induced by IMP4 overexpression could be reversed by treatment with an ERK pathway inhibitor (SCH772984). In vivo experiments further verified that IMP4 silencing repressed the growth of subcutaneous tumours and glycolysis. IMP4 silencing suppressed the malignancy of LUAD by inactivating ERK signalling.

13.
Transl Lung Cancer Res ; 11(9): 1912-1925, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36248333

RESUMO

Background: The effects and mechanism of 6-pyruvoyl-tetrahydropterin synthase (PTS) on lung adenocarcinoma (LUAD) were studied in LUAD cells and mice with subcutaneously transplanted tumors. Methods: PTS level in tissues and cells was tested by immunohistochemistry, western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). The impacts of PTS on cell viability, proliferation, apoptosis, invasion, and migration were determined by Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry, transwell assay, and wound healing assay, respectively. The Cancer Genome Atlas (TCGA) analysis and dual luciferase assay were conducted to predict and verify the relationship between PTS and activating transcription factor 4 (ATF4). A mouse model was established by subcutaneous injection with cancer cells. Tumor volume was calculated as V = ab2/2. Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to measure cell proliferation and apoptosis in tumors. Results: PTS was highly expressed in LUAD. Higher PTS level was correlated with late clinical stages and poor survival of patients. Down-regulation of PTS inhibited the viability and proliferation and induced apoptosis of LUAD cells. PTS was activated by ATF4, and up-regulation of ATF4 reversed the inhibitory effect of PTS silencing on LUAD cells. Silencing of PTS inhibited the Wnt pathway. Down-regulation of PTS inhibited tumor growth in mice. Conclusions: PTS was highly expressed in LUAD. PTS was activated by ATF4 and promoted LUAD development via the Wnt pathway.

14.
Nanomaterials (Basel) ; 12(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014695

RESUMO

The development of economically applicable, highly efficient and low cost photocatalytic materials has always been a challenge. In this work, we report a zirconium doped TiO2/diatomite (ZrTD) composite with enhanced visible light-induced photocatalytic activity. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, UV-VIS diffused reflectance spectroscopy, high-performance liquid chromatography-mass spectrometry, photoluminescence and X-ray photoelectron spectroscopy, respectively. The optimal doping ratio of zirconium into TiO2 was obtained at 3% (3%ZrTD composite), and the degradation rate constant of which tetracycline (TC) is up to around 8.65 times higher that of zirconium doped TiO2. In addition, zirconium doping introduces the impurity levels of Zr 3d and oxygen vacancies into the lattice of TiO2, resulting in broadening the light absorption range, reducing the band gap, and improving the separation efficiency of photogenerated electron-hole pairs, thus endowing with visible light photocatalytic properties. Moreover, both the photogenerated holes (h+) and superoxide (•O2-) radicals are responsible for the degradation process of TC, and a possible degradation pathway and the corresponding intermediate products of TC by ZrTD composite are also proposed in detail.

15.
Chemosphere ; 307(Pt 4): 136149, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029862

RESUMO

Nowadays, developing environmentally friendly catalysts with both low cost and high efficiency was still a challenge in actual organic wastewater purification. Herein, the Fe-N-C catalyst was successfully immobilized on solid waste derived ceramsite for efficient degradation of phenol under continuous flow conditions by activating peroxymonosulfate (PMS). After the introduction of ceramsite, the microstructure of Fe-N-C catalyst was changed from granular structure to worm-like structure, promoting the dispersion of the nanoscale catalyst and providing more reactive sites. Therefore, the phenol removal rate and mineralization rate of the obtained 0.5FNNC within 30 min were up to 96.79% and 71.79%, respectively. In addition, the degradation rate of the optimal composite (0.5FNNC)/PMS system was about 4.06 times higher than that of bare Fe-N-C/PMS system. Intriguingly, the Fe ion leaching from 0.5FNNC during the degradation reaction was significantly lower than bare Fe-N-C owing to the strong catalyst-support chemical bonding. Based on electron paramagnetic resonance, quenching experiments, X-ray photoelectron spectroscopy analysis and electrochemical analysis, it was indicated that the non-radical processes (1O2 and high valent iron-oxo species) should be responsible for the phenol degradation. Meanwhile, the possible phenol degradation pathways were proposed, and the intermediates were evaluated for ecotoxicity by ECOSAR. Finally, a preliminary economic analysis of this process was carried out. Overall, this work would provide a new strategy for the construction of ceramsite based multi-pore composite catalysts and the large-scale application of persulfate oxidation technology in organic wastewater treatment.


Assuntos
Fenol , Resíduos Sólidos , Misturas Complexas , Ferro/química , Peróxidos/química , Fenóis
16.
J Colloid Interface Sci ; 626: 494-505, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35809438

RESUMO

Persulfate activation technology based on sulfate radicals is currently a hot spot in the field of environmental governance. In our work, α-FeOOH was successful in situ loaded on kaolinite surface through a simple one-step hydrothermal process. The prepared composites were systematically characterized, and the relationship between the structural properties and peroxymonosulfate activation properties was explored. Interestingly, compared to bare α-FeOOH, the introduction of kaolinite in composite induced the transformation of α-FeOOH crystal and affected the morphology, where uniformly dispersed nanoparticles rather than rod-like agglomerated crystals appeared. The received FeOOH/kaolinite composite exhibited admirable adsorption and degradation of ciprofloxacin performance with the removal efficiency of 86.1%, and the degradation rate constant was up to 5.2 times higher than that of bare α-FeOOH. In addition, the main active species in the catalytic oxidation system are surface-bound SO4•-, •OH and free 1O2. This work would give a deep insight into the role of natural minerals in composite catalytic materials and the construction of high-efficient mineral-based composite materials.


Assuntos
Caulim , Poluentes Químicos da Água , Conservação dos Recursos Naturais , Política Ambiental , Compostos de Ferro , Minerais , Peróxidos , Poluentes Químicos da Água/química
17.
J Colloid Interface Sci ; 624: 713-724, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696789

RESUMO

The application of TiO2-based photocatalysts in air pollution control has attracted much attention thanks to their advantageous green and sustainable performance. However, how to improve the degradation efficiency under visible light is still challenging. Herein, we report a ternary three-dimensional "PIZZA"-like Bi2MoO6-TiO2/diatomite (BTD) composite with high-efficient mineralization and recycling performance towards gaseous formaldehyde (HCHO) under visible light. The high-efficient adsorption-photocatalysis collaborative system with intimate interface combination is successfully established among Bi2MoO6 (BMO), TiO2 and diatomite. The HCHO mineralization rate constant of BTD-1:2 composite is up to around 4.03 times and 2.18 times higher than those of bare BMO and binary Bi2MoO6-TiO2 composite, respectively. It is indicated that the introduction of diatomite increases active sites and plays the vital role in the improvement of photocatalysis. In addition, the photogenerated holes (h+) and hydroxyl radical (OH) are proved to be the main active species for HCHO mineralization. Furthermore, there is a competitive adsorption relationship between water (H2O) molecules and HCHO molecules, and both H2O molecules and oxygen (O2) molecules participated in the reaction of HCHO mineralization based on in-situ DRIFTs spectra analysis. Our work would give a new perspective on gaseous HCHO purification.


Assuntos
Bismuto , Formaldeído , Bismuto/química , Catálise , Terra de Diatomáceas , Formaldeído/química , Molibdênio , Titânio
18.
J Hazard Mater ; 436: 129244, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739763

RESUMO

Optimizing electron transfer channels and sufficiently exposing active sites to trigger an efficient Fenton-like reaction are vital for manipulating catalytic properties of water treatment. Herein, Fe2O3 quantum dots were prepared and integrated with composites of g-C3N4 and kaolinite with nitrogen (N) vacancies (FONGK-10) for bisphenol A (BPA) removal in a peroxymonosulfate (PMS)/visible light (Vis) system. X-ray absorption near-edge structures and extended X-ray absorption fine structures demonstrated interface's combined properties. In particular, the tight interfacial contact and introduction of N vacancies resulted in the formation of effective electron channels, which caused more effective separation of electron-hole pairs and an extended response time of 1.5 × 10-4 s. Furthermore, the introduction of kaolinite reduced the Fe2O3 particle size and accelerated PMS consumption. The k value in FONGK-10/PMS/Vis system was 4.5 times that of the FONGK-10/PMS and 27.5 times that of the FONGK-10/Vis system, and the synergetic system exhibited superior consecutive catalytic performance in a fluidized-bed catalytic unit, degrading ~100% of BPA in 200 min. The exposed electron channels significantly maintained the Fe(III)/Fe(II) stable dynamic cycle, thereby enhancing the activation of PMS and photocatalysis performance.

19.
J Hazard Mater ; 436: 129122, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35596992

RESUMO

To improve bacterial capture performance and inactivate bacteria, zero-valent iron (ZVI) were added into sand columns as permeable filtration media. Both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis (1.25 ×107 cells/mL) could be completely retained in 10 wt% ZVI amended sand columns in different ionic strength solutions (1-100 mM NaCl) at both slow (4 m/day) and fast (90 m/day) flow velocities. The strong adsorption property of ZVI contributed to the improved bacterial capture performance of sand columns. Moreover, ZVI could inactivate nearly all captured bacteria. Clearly, ZVI added as permeable layer not only could significantly enhance bacterial capture but also would inactivate the captured bacteria. ZVI could destroy the structure of extracellular polymeric substance and cell membrane. Intracellular oxidative stress was then increased and ATP content was decreased, causing bacterial death. Furthermore, high bacterial capture efficiencies were achieved with the coexisting of humic acid (0.2-5 mg/L), in actual river water samples, and longtime filtration processes. ZVI could be regenerated and reused as permeable layer to efficiently capture bacteria. Furthermore, sand columns with 10 wt% ZVI amendment could completely capture and inactivate 4.0 × 106 cells/mL algae. Clearly, ZVI amended sand filtration systems have potentials to purify water contaminated by pathogenic bacteria and algae.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Bactérias , Matriz Extracelular de Substâncias Poliméricas/química , Ferro/química , Areia , Água , Poluentes Químicos da Água/análise
20.
Thorac Cancer ; 13(12): 1806-1813, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35538917

RESUMO

BACKGROUND: To investigate the effects of computed tomography (CT) reconstruction slice thickness and contrast-enhancement phase on the differential diagnosis performance of radiomic signature in lung adenocarcinoma. METHODS: A total of 187 patients who had been pathologically confirmed with lung adenocarcinoma and nonadenocarcinoma were divided into a training cohort (n = 149) and validation cohort (n = 38). All the patients underwent contrast-enhanced CT and the images were reconstructed with different slice thickness. The radiomic features were extracted from different slice thickness and scan phase. The logistic regression (LR) algorithm was used to build a machine learning model for each group. The area under the curve (AUC) obtained from the receiver operating characteristic (ROC) curve and DeLong test was used to evaluate its discriminating performance. RESULTS: Finally, 34 image features and five semantic features were selected to establish a radiomics model. Based on the three contrast-enhanced CT phases and four reconstruction slice thickness, 12 groups of radiomics models showed good discrimination ability with the AUCs range from 0.9287 to 0.9631, sensitivity range from 0.8349 to 0.9083, specificity range from 0.825 to 0.925 in the training group. Similar results were observed in the validation group. However, there was no statistical significance between the different CT scan phase groups and different slice thickness (p > 0.05). CONCLUSIONS: The radiomic analysis of contrast-enhanced CT can be used for the differential diagnosis of lung adenocarcinoma. Moreover, different slice thickness and contrast-enhanced scan phase did not affect the discriminating ability in the radiomics models.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/patologia , Área Sob a Curva , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Curva ROC , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...