Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38900626

RESUMO

Microscopic cell detection is a challenging task due to significant inter-cell occlusions in dense clusters and diverse cell morphologies. This paper introduces a novel framework designed to enhance automated cell detection. The proposed approach integrates a deep learning model that produces an inverse distance transform-based detection map from the given image, accompanied by a secondary network designed to regress a cell density map from the same input. The inverse distance transform-based map effectively highlights each cell instance in the densely populated areas, while the density map accurately estimates the total cell count in the image. Then, a custom counting-aided cell center extraction strategy leverages the cell count obtained by integrating over the density map to refine the detection process, significantly reducing false responses and thereby boosting overall accuracy. The proposed framework demonstrated superior performance with F-scores of 96.93%, 91.21%, and 92.00% on the VGG, MBM, and ADI datasets, respectively, surpassing existing state-of-the-art methods. It also achieved the lowest distance error, further validating the effectiveness of the proposed approach. These results demonstrate significant potential for automated cell analysis in biomedical applications.

2.
Inorg Chem ; 63(23): 10568-10584, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38800842

RESUMO

To achieve a selective degradation of pollutants in a water body, 3D/1D magnetic molecularly imprinted fibers Fe3O4@TiO2/TC-TiO2/SiO2 were fabricated by an electrospinning method. The molecularly imprinted layer was successfully prepared by a direct imprinting method using TiO2 as a functional monomer. Fe3O4 facilitates the catalyst recovery and light utilization. The as-prepared fibrous photocatalyst has a large specific surface area of 132.4 m2/g. The successful generation of imprinted sites was proven by various characterizations. The weak interaction between the inorganic functional monomer and tetracycline (TC) was determined to be van der Waals force and hydrogen bonds by the IGMH isosurface theory. The construction of the 3D/1D homojunction of molecularly imprinted materials is beneficial to charge transfer. The as-prepared photocatalyst exhibits a high selectivity coefficient α = 737.38 competing with RhB. The TC removal efficiency reached 100% within only 20 min. In addition, the possible degradation pathway and the degradation mechanism are reasonably proposed. This work not only provides an in-depth mechanism of the weak interaction between the inorganic molecularly imprinted functional monomer and pollutant molecules but also offers new thoughts on the fabrication of photocatalysts for the effective and selective treatment of pollutants in water bodies.

3.
Elife ; 132024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573307

RESUMO

The perinuclear theca (PT) is a dense cytoplasmic web encapsulating the sperm nucleus. The physiological roles of PT in sperm biology and the clinical relevance of variants of PT proteins to male infertility are still largely unknown. We reveal that cylicin-1, a major constituent of the PT, is vital for male fertility in both mice and humans. Loss of cylicin-1 in mice leads to a high incidence of malformed sperm heads with acrosome detachment from the nucleus. Cylicin-1 interacts with itself, several other PT proteins, the inner acrosomal membrane (IAM) protein SPACA1, and the nuclear envelope (NE) protein FAM209 to form an 'IAM-cylicins-NE' sandwich structure, anchoring the acrosome to the nucleus. WES (whole exome sequencing) of more than 500 Chinese infertile men with sperm head deformities was performed and a CYLC1 variant was identified in 19 patients. Cylc1-mutant mice carrying this variant also exhibited sperm acrosome/head deformities and reduced fertility, indicating that this CYLC1 variant most likely affects human male reproduction. Furthermore, the outcomes of assisted reproduction were reported for patients harbouring the CYLC1 variant. Our findings demonstrate a critical role of cylicin-1 in the sperm acrosome-nucleus connection and suggest CYLC1 variants as potential risk factors for human male fertility.


Assuntos
Acrossomo , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Infertilidade Masculina/genética , Proteínas de Membrana/genética , Sêmen , Cabeça do Espermatozoide , Espermatozoides
4.
Sci Total Environ ; 919: 170614, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316308

RESUMO

Prenatal exposure to phthalates (PAEs) is ubiquitous among Chinese neonates. PAEs entering the body will be transformed to various hydrolyzed and oxidated PAE metabolites (mPAEs). PAEs and mPAEs exposure may lead to adverse birth outcomes through disruption of multiple hormone signaling pathways, induction of oxidative stress, and alterations in intracellular signaling processes. In this study, the concentrations of 11 mPAEs in 318 umbilical cord serum samples from neonates in Jinan were quantified with HPLC-ESI-MS. Multiple linear regression, Bayesian kernel machine regression, and quantile g-computation models were utilized to investigate the effects of both individual mPAE and mPAE mixture on birth outcomes. Stratified analysis was performed to explore whether these effects were gender-specific. mPAE mixture was negatively associated with birth length (BL) z-score, birth weight (BW) z-score, head circumference (HC) z-score, and ponderal index (PI). Mono(2-ethylhexyl) phthalate (MEHP) manifested negative associations with BL(z-score), BW(z-score), HC(z-score), and PI, whereas mono(2-carboxymethylhexyl) phthalate (MCMHP) was negatively associated with BW(z-score) and PI within the mPAE mixture. Stratified analysis revealed that the negative associations between mPAE mixture and four birth outcomes were attenuated in female infants, while the positive impact of mono(2-ethyl-5carboxypentyl) phthalate (MECPP) on BL(z-score) and BW(z-score) could be detected only in females. In summary, our findings suggest that prenatal exposure to phthalates may be associated with intrauterine growth restriction, and these effects vary according to the gender of the infant.


Assuntos
Dietilexilftalato/análogos & derivados , Poluentes Ambientais , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Recém-Nascido , Humanos , Feminino , Teorema de Bayes , Ácidos Ftálicos/metabolismo , Peso ao Nascer , Exposição Ambiental , Poluentes Ambientais/metabolismo
5.
Sci Total Environ ; 923: 171305, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423340

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are known to be linked with dyslipidemia. Between March and June 2022, we collected 575 fasting serum samples from individuals without occupational exposure in Jinan, China. Eighteen PFASs were analyzed using UHPLC-Orbitrap MS. Multiple linear regression (MLR), Bayesian kernel machine regression (BKMR), and Quantile g-computation (QGC) models were utilized to assess the effects of both individual PFAS and PFAS mixtures on serum lipid levels, including triglycerides (TG), cholesterol (CHO), high-density lipoprotein (HDL), and low-density lipoprotein (LDL). The PFAS mixture, composed of perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), perfluorotridecanoic acid (PFTrDA), perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonic acid (PFHpS), perfluorooctane sulfonate (PFOS), and 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), showed a positive association with CHO and LDL levels, while no distinct trend was noted in HDL and TG levels about changes in PFAS mixtures levels in BKMR and QGC models, adjusted for gender, age, BMI, occupation, and educational level. The effects of individual PFASs on lipid levels were in general consistent across MLR, BKMR and QGC models. PFUnDA and PFTrDA demonstrated greater impacts on blood lipid levels compared to other PFAS, albeit with varied directional effects. Age-stratified analysis revealed PFAS mixture effect was more pronounced in participants aged higher than 40. No obvious trend in lipid levels with changes in PFAS mixture levels in participants with age ranged from 18 to 40, while positive association between PFAS mixture and CHO and LDL was detected in participants aged higher than 40.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Ácidos Graxos , Fluorocarbonos , Humanos , Idoso , Estudos Transversais , Teorema de Bayes , Lipídeos
6.
Autophagy ; 20(6): 1314-1334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38174993

RESUMO

Accumulating evidence suggests that cancer-associated fibroblast (CAF) macroautophagy/autophagy is crucial in tumor development and may be a therapeutic target for pancreatic ductal adenocarcinoma (PDAC). However, the role of CAF autophagy during immune surveillance and cancer immunotherapy is unclear. The present study revealed that the inhibition of CAF autophagy suppresses in vivo tumor development in immune-deficient xenografts. This deletion compromises anti-tumor immunity and anti-tumor efficacy both in vitro and in vivo by upregulating CD274/PDL1 levels in an immune-competent mouse model. A block in CAF autophagy reduced the production of IL6 (interleukin 6), disrupting high desmoplastic TME and decreasing USP14 expression at the transcription level in pancreatic cancer cells. We further identify USP14 as the post-translational factor responsible for downregulating CD274 expression by removing K63 linked-ubiquitination at the K280 residue. Finally, chloroquine diphosphate-loaded mesenchymal stem cell (MSC)-liposomes, by accurately targeting CAFs, inhibited CAF autophagy, improving the efficacy of immunochemotherapy to combat pancreatic cancer.Abbreviation: AIR: adaptive immune resistance; ATRA: all-trans-retinoicacid; CAF: cancer-associated fibroblast; CD274/PDL1: CD274 molecule; CM: conditioned medium; CQ: chloroquine diphosphate; CyTOF: Mass cytometry; FGF2/bFGF: fibroblast growth factor 2; ICB: immune checkpoint blockade; IF: immunofluorescence; IHC: immunohistochemistry; IP: immunoprecipitation; MS: mass spectrometer; MSC: mesenchymal stem cell; PDAC: pancreatic ductal adenocarcinoma; TEM: transmission electron microscopy; TILs: tumor infiltrating lymphocytes; TME: tumor microenvironment; USP14: ubiquitin specific peptidase 14.


Assuntos
Autofagia , Fibroblastos Associados a Câncer , Imunoterapia , Neoplasias Pancreáticas , Microambiente Tumoral , Autofagia/efeitos dos fármacos , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Humanos , Camundongos , Imunoterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Imunidade Adaptativa/efeitos dos fármacos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Antígeno B7-H1/metabolismo , Cloroquina/farmacologia , Cloroquina/uso terapêutico
7.
Biochim Biophys Acta Rev Cancer ; 1879(1): 189022, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37993001

RESUMO

Glucose metabolism is essential for the activation, differentiation and function of T cells and proper glucose metabolism is required to maintain effective T cell immunity. Dysregulation of glucose metabolism is a hallmark of cancer, and the tumour microenvironment (TME2) can create metabolic barriers in T cells that inhibit their anti-tumour immune function. Targeting glucose metabolism is a promising approach to improve the capacity of T cells in the TME. The efficacy of common immunotherapies, such as immune checkpoint inhibitors (ICIs3) and adoptive cell transfer (ACT4), can be limited by T-cell function, and the treatment itself can affect T-cell metabolism. Therefore, understanding the relationship between immunotherapy and T cell glucose metabolism helps to achieve more effective anti-tumour therapy. In this review, we provide an overview of T cell glucose metabolism and how T cell metabolic reprogramming in the TME regulates anti-tumour responses, briefly describe the metabolic patterns of T cells during ICI and ACT therapies, which suggest possible synergistic strategies.


Assuntos
Neoplasias , Linfócitos T , Humanos , Neoplasias/metabolismo , Imunoterapia , Imunoterapia Adotiva , Glucose/metabolismo , Microambiente Tumoral
8.
Comput Struct Biotechnol J ; 21: 5561-5582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034399

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent subtypes of primary liver cancer, with high mortality and poor prognosis. Immunotherapy has revolutionized treatment strategies for many cancers. However, only a subset of patients with HCC achieve satisfactory benefits from immunotherapy. Therefore, a reliable biomarker that could predict the prognosis and immunotherapy response in patients with HCC is urgently needed. Taurine plays an important role in many physiological processes. However, its participation in the occurrence and progression of liver cancer and regulation of the composition and function of various components of the immune microenvironment remains elusive. In this study, we identified and validated two heterogeneous subtypes of HCC with different taurine metabolic profiles, presenting distinct genomic features, clinicopathological characteristics, and immune landscapes, using multiple bulk transcriptome datasets. Subsequently, we constructed a risk model based on genes related to taurine metabolism to assess the prognosis, immune cell infiltration, immunotherapy response, and drug sensitivity of patients with HCC. The risk model was validated using several independent external cohorts and showed a robust predictive performance. In addition, we evaluated the expression patterns of taurine metabolism-related genes in the tumor microenvironment and the heterogeneity of taurine metabolism among cancer cells using a single-cell transcriptome. In conclusion, our study provides insights into the important role played by taurine metabolism in tumor progression and immune regulation. Furthermore, the risk model can serve as a biomarker to assess patient prognosis and immunotherapy response, potentially helping clinicians make more precise and personalized clinical decisions.

9.
World J Surg Oncol ; 21(1): 210, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37475053

RESUMO

BACKGROUND: Uterine cervical carcinoma is a severe health threat worldwide, especially in China. The International Federation of Gynecology and Obstetrics (FIGO) has revised the staging system, emphasizing the strength of magnetic resonance imaging (MRI). We aimed to investigate long-term prognostic factors for FIGO 2018 stage II-IIIC2r uterine cervical squamous cell carcinoma following definitive radiotherapy and establish a prognostic model using MRI-derived tumor volume. METHODS: Patients were restaged according to the FIGO 2018 staging system and randomly grouped into training and validation cohorts (7:3 ratio). Optimal cutoff values of squamous cell carcinoma antigen (SCC-Ag) and tumor volume derived from MRI were generated for the training cohort. A nomogram was constructed based on overall survival (OS) predictors, which were selected using univariate and multivariate analyses. The performance of the nomogram was validated and compared with the FIGO 2018 staging system. Risk stratification cutoff points were generated, and survival curves of low-risk and high-risk groups were compared. RESULTS: We enrolled 396 patients (training set, 277; validation set, 119). The SCC-Ag and MRI-derived tumor volume cutoff values were 11.5 ng/mL and 28.85 cm3, respectively. A nomogram was established based on significant prognostic factors, including SCC-Ag, poor differentiation, tumor volume, chemotherapy, and FIGO 2018 stage. Decision curve analysis indicated that the net benefits of our model were higher. The high-risk group had significantly shorter OS than the low-risk group in both the training (p < 0.0001) and validation sets (p = 0.00055). CONCLUSIONS: Our nomogram predicted long-term outcomes of patients with FIGO 2018 stage II-IIIC2r uterine cervical squamous cell carcinoma. This tool can assist gynecologic oncologists and patients in treatment planning and prognosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/radioterapia , Estadiamento de Neoplasias , Prognóstico , Carga Tumoral , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/patologia
10.
Cell Rep ; 42(7): 112780, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440409

RESUMO

Protective immunity following vaccination is sustained by long-lived antibody-secreting cells and resting memory B cells (MBCs). Responses to two-dose SARS-CoV-2 mRNA-1273 vaccination are evaluated longitudinally by multimodal single-cell analysis in three infection-naïve individuals. Integrated surface protein, transcriptomics, and B cell receptor (BCR) repertoire analysis of sorted plasmablasts and spike+ (S-2P+) and S-2P- B cells reveal clonal expansion and accumulating mutations among S-2P+ cells. These cells are enriched in a cluster of immunoglobulin G-expressing MBCs and evolve along a bifurcated trajectory rooted in CXCR3+ MBCs. One branch leads to CD11c+ atypical MBCs while the other develops from CD71+ activated precursors to resting MBCs, the dominant population at month 6. Among 12 evolving S-2P+ clones, several are populated with plasmablasts at early timepoints as well as CD71+ activated and resting MBCs at later timepoints, and display intra- and/or inter-cohort BCR convergence. These relationships suggest a coordinated and predictable evolution of SARS-CoV-2 vaccine-generated MBCs.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Linfócitos B , Anticorpos Antivirais , Vacinação
11.
Front Plant Sci ; 14: 1211451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457360

RESUMO

Cork spot disorder has affected the fruit of Asian pear since the 1990s and has become serious in recent years with increasingly affected cultivars and areas. The commodity value of affected fruit is greatly decreased, resulting in severe economic losses. Cork spot disorder of pear fruit is a physiological disorder, and the factors responsible are relatively complex. Research on the cause of cork spot disorder is still at an early stage and, thus, further investigations are needed to elucidate the underlying mechanism of the disorder. In this review, current knowledge of the factors associated with the incidence of cork spot disorder in Asian pear fruit is summarized, including fruit growth and development, fruit nutrient status, and environmental factors. Potential preventive measures and priorities for future research are outlined.

12.
Mol Ther ; 31(10): 2929-2947, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37515321

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to immune checkpoint blockade therapy, and negative feedback of tumor immune evasion might be partly responsible. We isolated CD8+ T cells and cultured them in vitro. Proteomics analysis was performed to compare changes in Panc02 cell lines cultured with conditioned medium, and leucine-rich repeat kinase 2 (LRRK2) was identified as a differential gene. LRRK2 expression was related to CD8+ T cell spatial distribution in PDAC clinical samples and upregulated by CD8+ T cells via interferon gamma (IFN-γ) simulation in vitro. Knockdown or pharmacological inhibition of LRRK2 activated an anti-pancreatic cancer immune response in mice, which meant that LRRK2 acted as an immunosuppressive gene. Mechanistically, LRRK2 phosphorylated PD-L1 at T210 to inhibit its ubiquitination-mediated proteasomal degradation. LRRK2 inhibition attenuated PD-1/PD-L1 blockade-mediated, T cell-induced upregulation of LRRK2/PD-L1, thus sensitizing the mice to anti-PD-L1 therapy. In addition, adenosylcobalamin, the activated form of vitamin B12, which was found to be a broad-spectrum inhibitor of LRRK2, could inhibit LRRK2 in vivo and sensitize PDAC to immunotherapy as well, which potentially endows LRRK2 inhibition with clinical translational value. Therefore, PD-L1 blockade combined with LRRK2 inhibition could be a novel therapy strategy for PDAC.

13.
Cancers (Basel) ; 15(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37190154

RESUMO

The traditional immune checkpoint blockade therapy benefits some patients with cancer, but elicits no response in certain cancers, such as pancreatic adenocarcinoma (PAAD); thus, novel checkpoints and effective targets are required. Here, we found that there was a higher Neuropilin (NRP) expression in tumor tissues as novel immune checkpoints, which was associated with poor prognosis and pessimistic responses to immune checkpoint blockade therapy. In the tumor microenvironment of PAAD samples, NRPs were widely expressed in tumor, immune and stromal cells. The relationship of NRPs with tumor immunological features in PAAD and pan-cancer was evaluated using bioinformatics methods; it was positively correlated with the infiltration of myeloid immune cells and the expression of most immune checkpoint genes. Bioinformatics analysis, in vitro and in vivo experiments suggested that NRPs exhibit potential immune-related and immune-independent pro-tumor effects. NRPs, especially NRP1, are attractive biomarkers and therapeutic targets for cancers, particularly PAAD.

14.
Oncogene ; 42(25): 2061-2073, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37156839

RESUMO

Highly desmoplastic and immunosuppressive tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) contributes to tumor progression and resistance to current therapies. Clues targeting the notorious stromal environment have offered hope for improving therapeutic response whereas the underlying mechanism remains unclear. Here, we find that prognostic microfibril associated protein 5 (MFAP5) is involved in activation of cancer-associated fibroblasts (CAFs). Inhibition of MFAP5highCAFs shows synergistic effect with gemcitabine-based chemotherapy and PD-L1-based immunotherapy. Mechanistically, MFAP5 deficiency in CAFs downregulates HAS2 and CXCL10 via MFAP5/RCN2/ERK/STAT1 axis, leading to angiogenesis, hyaluronic acid (HA) and collagens deposition reduction, cytotoxic T cells infiltration, and tumor cells apoptosis. Additionally, in vivo blockade of CXCL10 with AMG487 could partially reverse the pro-tumor effect from MFAP5 overexpression in CAFs and synergize with anti-PD-L1 antibody to enhance the immunotherapeutic effect. Therefore, targeting MFAP5highCAFs might be a potential adjuvant therapy to enhance the immunochemotherapy effect in PDAC via remodeling the desmoplastic and immunosuppressive microenvironment.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Microfibrilas/metabolismo , Microfibrilas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Proteínas/metabolismo , Imunoterapia , Microambiente Tumoral , Proteínas de Ligação ao Cálcio/metabolismo , Neoplasias Pancreáticas
15.
Biomed Pharmacother ; 163: 114762, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37100015

RESUMO

Autophagy helps maintain energy homeostasis and protect cells from stress effects by selectively removing misfolded/polyubiquitylated proteins, lipids, and damaged mitochondria. Cancer-associated fibroblasts (CAFs) are cellular components of tumor microenvironment (TME). Autophagy in CAFs inhibits tumor development in the early stages; however, it has a tumor-promoting effect in advanced stages. In this review, we aimed to summarize the modulators responsible for the induction of autophagy in CAFs, such as hypoxia, nutrient deprivation, mitochondrial stress, and endoplasmic reticulum stress. In addition, we aimed to present autophagy-related signaling pathways in CAFs, and role of autophagy in CAF activation, tumor progression, tumor immune microenvironment. Autophagy in CAFs may be an emerging target for tumor therapy. In summary, autophagy in CAFs is regulated by a variety of modulators and can reshape tumor immune microenvironment, affecting tumor progression and treatment.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos/metabolismo , Neoplasias/patologia , Transdução de Sinais , Mitocôndrias/metabolismo , Microambiente Tumoral/fisiologia
16.
Immunotherapy ; 15(3): 135-147, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36779368

RESUMO

Background: The study aimed to evaluate the effect of a galectin-9 and PD-L1 combined blockade in pancreatic ductal adenocarcinoma (PDAC). Methods: The expression of galectin-9 and PD-L1 was analyzed in PDAC. Furthermore, we explored the therapeutic effect of combined anti-galectin-9 and anti-PD-L1 therapy on pancreatic cancer in vivo. Results: Higher expression of galectin-9 and PD-L1 was observed in human PDAC compared with the normal pancreas. Furthermore, in a murine model of PDAC, combined anti-galectin-9 and anti-PD-L1 treatment was associated with a greater decrease in tumor growth compared with treatment with either antibody therapy alone. Conclusion: Anti-PD-L1 antibody treatment for PDAC patients may be enhanced by inhibiting galectin-9.


Pancreatic cancer is considered to be a fatal disease with high mortality. Most pancreatic cancer patients are diagnosed at an advanced stage, with limited treatment options. Immunotherapy has become a new antitumor method by activating immunity and inhibiting tumor immune escape. Some clinical studies have shown that anti-PD-1/PD-L1 immunotherapy is a promising antitumor approach, but tumor resistance may develop. This study shows that both PD-L1 and galectin-9 are highly expressed in pancreatic cancer tissues, and the combined application of anti-PD-L1 and anti-galectin-9 antibodies can achieve a better tumor growth inhibition effect. These findings provide new strategies for the immunotherapy of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Terapia Combinada , Antígeno B7-H1 , Neoplasias Pancreáticas
17.
Cell Death Differ ; 30(2): 560-575, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36539510

RESUMO

Programmed death-1 (PD-1) and its ligand programmed death-ligand 1 (PD-L1) help tumor cells evade immune surveillance, and are regarded as important targets of anti-tumor immunotherapy. Post-translational modification of PD-L1 has potential value in immunosuppression. Here, we identified that ubiquitin-specific protease 8 (USP8) deubiquitinates PD-L1. Pancreatic cancer tissues exhibited significantly increased USP8 levels compared with those in normal tissues. Clinically, the expression of USP8 showed a significant association with the tumor-node-metastasis stage in multiple patient-derived cohorts of pancreatic cancer. Meanwhile, USP8 deficiency could reduce tumor invasion and migration and tumor size in an immunity-dependent manner, and improve anti-tumor immunogenicity. USP8 inhibitor pretreatment led to reduced tumorigenesis and immunocompetent mice with Usp8 knockdown tumors exhibited extended survival. Moreover, USP8 interacted positively with PD-L1 and upregulated its expression by inhibiting the ubiquitination-regulated proteasome degradation pathway in pancreatic cancer. Combination therapy with a USP8 inhibitor and anti-PD-L1 effectively suppressed pancreatic tumor growth by activation of cytotoxic T-cells and the anti-tumor immunity was mainly dependent on the PD-L1 pathway and CD8 + T cells. Our findings highlight the importance of targeting USP8, which can sensitize PD-L1-targeted pancreatic cancer to immunotherapy and might represent a novel therapeutic strategy to treat patients with pancreatic tumors in the future.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pancreáticas , Animais , Camundongos , Imunoterapia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteases Específicas de Ubiquitina , Neoplasias Pancreáticas
18.
J Med Virol ; 95(1): e28108, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36042555

RESUMO

The VG161 represents the first recombinant oncolytic herpes simplex virus type 1 carrying multiple synergistic antitumor immuno-modulating factors. Here, we report its antitumor mechanisms and thus provide firm theoretical foundation for the upcoming clinical application in pancreatic cancer. Generally, the VG161-mediated antitumor outcomes were analyzed by a collaboration of techniques, namely the single-cell sequencing, airflow-assisted desorption electrospray ionization-mass spectrometry imaging (AFADSI-MSI) and nanostring techniques. In vitro, the efficacy of VG161 together with immune checkpoint inhibitors (ICIs) has been successfully shown to grant a long-term antitumor effect by altering tumor immunity and remodeling tumor microenvironment (TME) metabolisms. Cellular functional pathways and cell subtypes detected from patient samples before and after the treatment had undergone distinctive changes including upregulated CD8+ T and natural killer cells. More importantly, significant antitumor signals have emerged since the administration of VG161 injection. In conclusion, VG161 can systematically activate acquired and innate immunity in pancreatic models, as well as improve the tumor immune microenvironment, indicative of strong antitumor potential. The more robusting antitumor outcome for VG161 monotherapy or in combination with other therapies on pancreatic cancer is worth of being explored in further clinical trials.


Assuntos
Herpesvirus Humano 1 , Terapia Viral Oncolítica , Neoplasias Pancreáticas , Humanos , Terapia Viral Oncolítica/métodos , Herpesvirus Humano 1/genética , Imunomodulação , Neoplasias Pancreáticas/terapia , Transgenes , Linhagem Celular Tumoral , Microambiente Tumoral , Neoplasias Pancreáticas
19.
Proc Natl Acad Sci U S A ; 119(52): e2203894119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36534812

RESUMO

The gut microbiota and liver cancer have a complex interaction. However, the role of gut microbiome in liver tumor initiation remains unknown. Herein, liver cancer was induced using hydrodynamic transfection of oncogenes to explore liver tumorigenesis in mice. Gut microbiota depletion promoted liver tumorigenesis but not progression. Elevated sterol regulatory element-binding protein 2 (SREBP2) was observed in mice with gut flora disequilibrium. Pharmacological inhibition of SREBP2 or Srebf2 RNA interference attenuated mouse liver cancer initiation under gut flora disequilibrium. Furthermore, gut microbiota depletion impaired gut tryptophan metabolism to activate aryl hydrocarbon receptor (AhR). AhR agonist Ficz inhibited SREBP2 posttranslationally and reversed the tumorigenesis in mice. And, AhR knockout mice recapitulated the accelerated liver tumorigenesis. Supplementation with Lactobacillus reuteri, which produces tryptophan metabolites, inhibited SREBP2 expression and tumorigenesis in mice with gut flora disequilibrium. Thus, gut flora disequilibrium promotes liver cancer initiation by modulating tryptophan metabolism and up-regulating SREBP2.


Assuntos
Disbiose , Microbioma Gastrointestinal , Neoplasias Hepáticas , Proteína de Ligação a Elemento Regulador de Esterol 2 , Animais , Camundongos , Carcinogênese , Neoplasias Hepáticas/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Triptofano/metabolismo , Disbiose/complicações
20.
Cell ; 185(23): 4333-4346.e14, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36257313

RESUMO

SARS-CoV-2 mRNA booster vaccines provide protection from severe disease, eliciting strong immunity that is further boosted by previous infection. However, it is unclear whether these immune responses are affected by the interval between infection and vaccination. Over a 2-month period, we evaluated antibody and B cell responses to a third-dose mRNA vaccine in 66 individuals with different infection histories. Uninfected and post-boost but not previously infected individuals mounted robust ancestral and variant spike-binding and neutralizing antibodies and memory B cells. Spike-specific B cell responses from recent infection (<180 days) were elevated at pre-boost but comparatively less so at 60 days post-boost compared with uninfected individuals, and these differences were linked to baseline frequencies of CD27lo B cells. Day 60 to baseline ratio of BCR signaling measured by phosphorylation of Syk was inversely correlated to days between infection and vaccination. Thus, B cell responses to booster vaccines are impeded by recent infection.


Assuntos
Linfócitos B , COVID-19 , Vacinas Virais , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Vacinação , Linfócitos B/imunologia , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...