Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chempluschem ; 84(11): 1709-1715, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31943885

RESUMO

A cage-type composite was successfully prepared by attaching p-sulfonatocalix[4]arene to a porous activated carbon aerogel (ACA). The resulting composite showed a high specific surface area of 1620.7 m2 g-1 and a high sulfur loading of 2.5 mg cm-2 . The calixarene is uniformly dispersed on the carbon spheres and efficiently captures polysulfides by interaction with the sulfonate groups. Meanwhile, the cross-linked porous structure of the composite restricts the migration of polysulfides. The cathode delivers an outstanding electrochemical performance with an initial capacity of 1304.7 mAh g-1 at 0.2 C. Furthermore, it displays excellent long-term cycling stability, maintaining 884.7 mAh g-1 after 300 cycles at 0.5 C. Density functional theory (DFT) adsorption calculations support the strong interaction between the calixarenes and polysulfides and reveal the capture mechanism.

2.
ACS Synth Biol ; 8(1): 82-90, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30513194

RESUMO

Error correction codes, such as low-density parity check (LDPC) codes, are required to be larger scale to meet the increasing demands for reliable and massive data transmission. However, the construction of such a large-scale decoder will result in high complexity and hinder its silicon implementation. Thanks to the advantages of natural computing in high parallelism and low power, we propose a method to synthesize a uniform molecular LDPC decoder by implementing the belief-propagation algorithm with chemical reaction networks (CRNs). This method enables us to flexibly design the LDPC decoder with arbitrary code length, code rate, and node degrees. Compared with existing methods, our proposal reduces the number of reactions to update the variable nodes by 42.86% and the check nodes by 47.37%. Numerical results are presented to show the feasibility and validity of our proposal.


Assuntos
Silício , Algoritmos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...