Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5122, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879562

RESUMO

Light-weight, high-strength, aluminum (Al) alloys have widespread industrial applications. However, most commercially available high-strength Al alloys, like AA 7075, are not suitable for additive manufacturing due to their high susceptibility to solidification cracking. In this work, a custom Al alloy Al92Ti2Fe2Co2Ni2 is fabricated by selective laser melting. Heterogeneous nanoscale medium-entropy intermetallic lamella form in the as-printed Al alloy. Macroscale compression tests reveal a combination of high strength, over 700 MPa, and prominent plastic deformability. Micropillar compression tests display significant back stress in all regions, and certain regions have flow stresses exceeding 900 MPa. Post-deformation analyses reveal that, in addition to abundant dislocation activities in Al matrix, complex dislocation structures and stacking faults form in monoclinic Al9Co2 type brittle intermetallics. This study shows that proper introduction of heterogeneous microstructures and nanoscale medium entropy intermetallics offer an alternative solution to the design of ultrastrong, deformable Al alloys via additive manufacturing.

2.
Sci Adv ; 10(16): eadj4079, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630827

RESUMO

Ceramic materials with high strength and chemical inertness are widely used as engineering materials. However, the brittle nature limits their applications as fracture occurs before the onset of plastic yielding. There has been limited success despite extensive efforts to enhance the deformability of ceramics. Here we report a method for enhancing the room temperature plastic deformability of ceramics by artificially introducing abundant defects into the materials via preloading at elevated temperatures. After the preloading treatment, single crystal (SC) TiO2 exhibited a substantial increase in deformability, achieving 10% strain at room temperature. SC α-Al2O3 also showed plastic deformability, 6 to 7.5% strain, by using the preloading strategy. These preinjected defects enabled the plastic deformation process of the ceramics at room temperature. These findings suggest a great potential for defect engineering in achieving plasticity in ceramics at room temperature.

3.
Discov Nano ; 19(1): 43, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38468015

RESUMO

Nanotwinned metals have been intensely investigated due to their unique microstructures and superior properties. This work aims to investigate the nanovoid formation mechanism in sputter-deposited nanotwinned Cu. Three different types of epitaxial or polycrystalline Cu films are fabricated by magnetron sputtering deposition technique. In the epitaxial Cu (111) films deposited on Si (110) substrates, high fractions of nanovoids and nanotwins are formed. The void size and density can be tailored by varying deposition parameters, including argon pressure, deposition rate, and film thickness. Interestingly, nanovoids become absent in the polycrystalline Cu film deposited on Si (111) substrate, but they can be regained in the epitaxial nanotwinned Cu (111) when deposited on Si (111) substrate with an Ag seed layer. The nanovoid formation seems to be closely associated with twin nucleation and film texture. Based on the comparative studies between void-free polycrystalline Cu films and epitaxial nanotwinned Cu films with nanovoids, the underlying mechanisms for the formation of nanovoids are discussed within the framework of island coalescence model.

4.
Small Methods ; : e2400087, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482953

RESUMO

Hyperbolic metamaterials (HMM) possess significant anisotropic physical properties and tunability and thus find many applications in integrated photonic devices. HMMs consisting of metal and dielectric phases in either multilayer or vertically aligned nanocomposites (VAN) form are demonstrated with different hyperbolic properties. Herein, self-assembled HfO2 -Au/TiN-Au multilayer thin films, combining both the multilayer and VAN designs, are demonstrated. Specifically, Au nanopillars embedded in HfO2 and TiN layers forming the alternative layers of HfO2 -Au VAN and TiN-Au VAN. The HfO2 and TiN layer thickness is carefully controlled by varying laser pulses during pulsed laser deposition (PLD). Interestingly, tunable anisotropic physical properties can be achieved by adjusting the bi-layer thickness and the number of the bi-layers. Type II optical hyperbolic dispersion can be obtained from high layer thickness structure (e.g., 20 nm), while it can be transformed into Type I optical hyperbolic dispersion by reducing the thickness to a proper value (e.g., 4 nm). This new nanoscale hybrid metamaterial structure with the three-phase VAN design shows great potential for tailorable optical components in future integrated devices.

5.
Nanoscale ; 15(41): 16752-16765, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37817681

RESUMO

Flash-sintered (FS) ceramics have shown promising mechanical deformability at room temperature compared to conventional sintered ceramics. One major contributing factor to plasticity is high-density defects, such as dislocations, stacking faults and point defects, resulted presumably from the high electrical field during flash sintering. However, such direct experiemtnal evidence for defect formation and evolution under the electric field remains lacking. Here we performed in situ biasing experiments in FS and conventionally sintered (CS) polycrystalline TiO2 in a transmission electron microscope (TEM) to compare the defect evolution dynamics. In situ TEM studies revealed the coalescence of point defects under the electrical field in both FS and CS TiO2 and the subsequent formation of stacking faults, which are often referred to as Wadsley defects. Surprisingly, under the electrical field, the average fault growth rate in the FS samples is 10 times as much as that in the CS TiO2. Furthermore, the Magnéli phase, a 3D oxygen-deficient phase formed by the aggregation of Wadsley defects, is observed in the FS samples, but not in the CS samples. The present study provides new insights into defect dynamics in FS ceramics.

6.
Nano Lett ; 23(21): 9711-9718, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37875263

RESUMO

Filamentary-type resistive switching devices, such as conductive bridge random-access memory and valence change memory, have diverse applications in memory and neuromorphic computing. However, the randomness in filament formation poses challenges to device reliability and uniformity. To overcome this issue, various defect engineering methods have been explored, including doping, metal nanoparticle embedding, and extended defect utilization. In this study, we present a simple and effective approach using self-assembled uniform Au nanoelectrodes to controll filament formation in HfO2 resistive switching devices. By concentrating the electric field near the Au nanoelectrodes within the BaTiO3 matrix, we significantly enhanced the device stability and reduced the threshold voltage by up to 45% in HfO2-based artificial neurons compared to the control devices. The threshold voltage reduction is attributed to the uniformly distributed Au nanoelectrodes in the insulating matrix, as confirmed by COMSOL simulation. Our findings highlight the potential of nanostructure design for precise control of filamentary-type resistive switching devices.

7.
ACS Appl Mater Interfaces ; 15(31): 37810-37817, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493477

RESUMO

Nanostructured plasmonic-magnetic metamaterials have gained great research interest due to their enhanced magneto-optical coupling effects. Here, we report a complex three-phase nanocomposite design combining ferromagnetic CoFe2 with plasmonic TiN and Au as a multifunctional hybrid metamaterial using either a cogrowth or a templated method. Via the first method of cogrowing three phases, three different morphologies of Au-CoFe2 core-shell nanopillars were formed in the TiN matrix. Via the second method of sequential deposition of a TiN-Au seed layer and a TiN-CoFe2 layer, highly ordered and uniform single-type core-shell nanopillars (i.e., the CoFe2 shell with a Au core) form in the TiN matrix. Both cogrowth and templated growth TiN-CoFe2-Au hybrid systems exhibit excellent epitaxial quality, hyperbolic dispersion, magnetic anisotropy, and a magneto-optical coupling effect. This study provides an effective approach for achieving highly uniform multiphase vertically aligned nanocomposite structures with well-integrated optical, magnetic, and coupling properties.

8.
Mater Horiz ; 10(8): 3101-3113, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37218512

RESUMO

Metamaterials present great potential in the applications of solar cells and nanophotonics, such as super lenses and other meta devices, owing to their superior optical properties. In particular, hyperbolic metamaterials (HMMs) with exceptional optical anisotropy offer improved manipulation of light-matter interactions as well as a divergence in the density of states and thus show enhanced performances in related fields. Recently, the emerging field of oxide-metal vertically aligned nanocomposites (VANs) suggests a new approach to realize HMMs with flexible microstructural modulations. In this work, a new oxide-metal metamaterial system, CeO2-Au, has been demonstrated with variable Au phase morphologies from nanoparticle-in-matrix (PIM), nanoantenna-in-matrix, to VAN. The effective morphology tuning through deposition background pressure, and the corresponding highly tunable optical performance of three distinctive morphologies, were systematically explored and analyzed. A hyperbolic dispersion at high wavelength has been confirmed in the nano-antenna CeO2-Au thin film, proving this system as a promising candidate for HMM applications. More interestingly, a new and abnormal in-plane epitaxy of Au nanopillars following the large mismatched CeO2 matrix instead of the well-matched SrTiO3 substrate, was discovered. Additionally, the tilting angle of Au nanopillars, α, has been found to be a quantitative measure of the balance between kinetics and thermodynamics during the depositions of VANs. All these findings provide valuable information in the understanding of the VAN formation mechanisms and related morphology tuning.

9.
Sci Adv ; 9(22): eadd9780, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256952

RESUMO

Nanostructured metallic materials with abundant high-angle grain boundaries exhibit high strength and good radiation resistance. While the nanoscale grains induce high strength, they also degrade tensile ductility. We show that a gradient nanostructured ferritic steel exhibits simultaneous improvement in yield strength by 36% and uniform elongation by 50% compared to the homogenously structured counterpart. In situ tension studies coupled with electron backscattered diffraction analyses reveal intricate coordinated deformation mechanisms in the gradient structures. The outermost nanolaminate grains sustain a substantial plastic strain via a profound deformation mechanism involving prominent grain reorientation. This synergistic plastic co-deformation process alters the rupture mode in the post-necking regime, thus delaying the onset of fracture. The present discovery highlights the intrinsic plasticity of nanolaminate grains and their significance in simultaneous improvement of strength and tensile ductility of structural metallic materials.

10.
Materials (Basel) ; 16(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37241334

RESUMO

Oxide-dispersion-strengthened (ODS) alloys have long been considered for high temperature turbine, spacecraft, and nuclear reactor components due to their high temperature strength and radiation resistance. Conventional synthesis approaches of ODS alloys involve ball milling of powders and consolidation. In this work, a process-synergistic approach is used to introduce oxide particles during laser powder bed fusion (LPBF). Chromium (III) oxide (Cr2O3) powders are blended with a cobalt-based alloy, Mar-M 509, and exposed to laser irradiation, resulting in reduction-oxidation reactions involving metal (Ta, Ti, Zr) ions from the metal matrix to form mixed oxides of increased thermodynamic stability. A microstructure analysis indicates the formation of nanoscale spherical mixed oxide particles as well as large agglomerates with internal cracks. Chemical analyses confirm the presence of Ta, Ti, and Zr in agglomerated oxides, but primarily Zr in the nanoscale oxides. Mechanical testing reveals that agglomerate particle cracking is detrimental to tensile ductility compared to the base alloy, suggesting the need for improved processing methods to break up oxide particle clusters and promote their uniform dispersion during laser exposure.

11.
Nano Lett ; 23(4): 1119-1127, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36719402

RESUMO

VO2 has shown great promise for sensors, smart windows, and energy storage devices, because of its drastic semiconductor-to-metal transition (SMT) near 340 K coupled with a structural transition. To push its application toward room-temperature, effective transition temperature (Tc) tuning in VO2 is desired. In this study, tailorable SMT characteristics in VO2 films have been achieved by the electrochemical intercalation of foreign ions (e.g., Li ions). By controlling the relative potential with respect to Li/Li+ during the intercalation process, Tc of VO2 can be effectively and systematically tuned in the window from 326.7 to 340.8 K. The effective Tc tuning could be attributed to the observed strain and lattice distortion and the change of the charge carrier density in VO2 introduced by the intercalation process. This demonstration opens up a new approach in tuning the VO2 phase transition toward room-temperature device applications and enables future real-time phase change property tuning.

12.
Sci Data ; 9(1): 672, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333350

RESUMO

The Qinling-Daba Mountains span subtropical and warm temperate zones and are one of the most remarkable biodiversity hotspots in China. Establishing a complete checklist of seed plants organized by nature reserves in the Qinling-Daba Mountains and adjacent areas is an important basis for managing and utilizing plant resources. First, we collected seed plant species data from published checklists representing 58 nature reserves in the Qinling-Daba Mountains and adjacent areas; second, we comprehensively and systematically sorted and integrated these data; third, we proofread and revised the data with the help of the R language and Flora of China dataset; and finally, we set up a seed plant database containing 96148 records, including the name, order, family, genus, life form, and endemism of each species for the entirety of the Qinling-Daba Mountains. The database contains 9491 species of seed plants belonging to 1729 genera, 211 families, and 59 orders, accounting for 39% of China's seed plants.


Assuntos
Biodiversidade , Sementes , Humanos , China , Ecologia , Ecossistema , Geografia , Plantas , Bases de Dados Factuais
13.
Nanoscale ; 14(33): 11979-11987, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35924419

RESUMO

Oxide-metal-based hybrid materials have gained great research interest in recent years owing to their potential for multifunctionality, property coupling, and tunability. Specifically, oxide-metal hybrid materials in a vertically aligned nanocomposite (VAN) form could produce pronounced anisotropic physical properties, e.g., hyperbolic optical properties. Herein, self-assembled HfO2-Au nanocomposites with ultra-fine vertically aligned Au nanopillars (as fine as 3 nm in diameter) embedded in a HfO2 matrix were fabricated using a one-step self-assembly process. The film crystallinity and pillar uniformity can be obviously improved by adding an ultra-thin TiN-Au buffer layer during the growth. The HfO2-Au hybrid VAN films show an obvious plasmonic resonance at 480 nm, which is much lower than the typical plasmonic resonance wavelength of Au nanostructures, and is attributed to the well-aligned ultra-fine Au nanopillars. Coupled with the broad hyperbolic dispersion ranging from 1050 nm to 1800 nm in wavelength, and unique dielectric HfO2, this nanoscale hybrid plasmonic metamaterial presents strong potential for the design of future integrated optical and electronic switching devices.

14.
Molecules ; 27(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35335149

RESUMO

Hyperbolic metamaterials are a class of materials exhibiting anisotropic dielectric function owing to the morphology of the nanostructures. In these structures, one direction behaves as a metal, and the orthogonal direction behaves as a dielectric material. Applications include subdiffraction imaging and hyperlenses. However, key limiting factors include energy losses of noble metals and challenging fabrication methods. In this work, self-assembled plasmonic metamaterials consisting of anisotropic nanoalloy pillars embedded into the ZnO matrix are developed using a seed-layer approach. Alloys of AuxAl1-x or AuxCu1-x are explored due to their lower losses and higher stability. Optical and microstructural properties were explored. The ZnO-AuxCu1-x system demonstrated excellent epitaxial quality and optical properties compared with the ZnO-AuxAl1-x system. Both nanocomposite systems demonstrate plasmonic resonance, hyperbolic dispersion, low losses, and epsilon-near-zero permittivity, making them promising candidates towards direct photonic integration.

15.
Nanoscale Adv ; 5(1): 247-254, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36605792

RESUMO

Magnetoacoustic waves generated in piezoelectric and ferromagnetic coupled nanocomposite films through magnetically driven surface acoustic waves present great promise of loss-less data transmission. In this work, ferromagnetic metals of Ni, Co and Co x Ni1-x are coupled with a piezoelectric ZnO matrix in a vertically-aligned nanocomposite (VAN) thin film platform. Oxidation was found to occur in the cases of ZnO-Co, forming a ZnO-CoO VAN, while only very minor oxidation was found in the case of ZnO-Ni VAN. An alloy approach of Co x Ni1-x has been explored to overcome the oxidation during growth. Detailed microstructural analysis reveals limited oxidation of both metals and distinct phase separation between the ZnO and the metallic phases. Highly anisotropic properties including anisotropic ferromagnetic properties and hyperbolic dielectric functions are found in the ZnO-Ni and ZnO-Co x Ni1-x systems. The magnetic metal-ZnO-based hybrid metamaterials in this report present great potential in coupling of optical, magnetic, and piezoelectric properties towards future magnetoacoustic wave devices.

16.
Nanoscale ; 13(35): 14987-15001, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533161

RESUMO

Recent experimental studies show that co-sputtering solutes with Al, together, can refine columnar grain size around few tens of nanometers and promote the formation and enhance the stability of planar defects such as stacking faults (SFs) and grain boundaries (GBs) in Al alloys. These crystal defects and fine columnar grains result in high strength, enhanced strain hardening and thermal stability of Al alloys. Using first-principles density-functional theory (DFT) calculations, we studied the role of eleven solutes in tailoring kinetics and energetics of adatoms and clusters on Al {111} surface, stable and unstable stacking fault energies, and kinetic energy barriers for the migration of defects. The calculations show that most solutes can effectively refine columnar grain size by decreasing the diffusivity of adatoms and surface clusters. These solutes do not necessarily decrease the stacking fault energy of Al alloys, but reduce the formation energy of faulted surface clusters and increase the energy barriers for the recovery of faulted surface clusters. Correspondingly, the formation of SFs is kinetically promoted during sputtering. Furthermore, solutes are segregated into the core of Shockley partial dislocations and play a pinning effect on SFs, SF arrays and twin boundaries, enhancing the thermal stability of these crystal defects. These findings provide insights into the design of high-strength Al alloys for high-temperature applications.

17.
ACS Appl Mater Interfaces ; 13(33): 39730-39737, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34378908

RESUMO

The next-generation spintronic devices including memristors, tunneling devices, or stochastic switching exert surging demands on magnetic nanostructures with novel coupling schemes. Taking advantage of a phase decomposition mechanism, a unique Ni-NiO nanocomposite has been demonstrated using a conventional pulsed laser deposition technique. Ni nanodomains are segregated from NiO and exhibit as faceted "emerald-cut" morphologies with tunable dimensions affected by the growth temperature. The sharp interfacial transition between ferromagnetic (002) Ni and antiferromagnetic (002) NiO, as characterized by high-resolution transmission electron microscopy, introduces a strong exchange bias effect and magneto-optical coupling at room temperature. In situ heating-cooling X-ray diffraction (XRD) study confirms an irreversible phase transformation between Ni and NiO under ambient atmosphere. Synthesizing highly functional two-phase nanocomposites with a simple bottom-up self-assembly via such a phase decomposition mechanism presents advantages in terms of epitaxial quality, surface coverage, interfacial coupling, and tunable nanomagnetism, which are valuable for new spintronic device implementation.

18.
Sci Adv ; 7(27)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34215574

RESUMO

Although intermetallics are attractive for their high strength, many of them are often brittle at room temperature, thereby severely limiting their potential as structural materials. Here, we report on a previously unidentified deformable nanocrystalline CoAl intermetallics with Co-rich thick grain boundaries (GBs). In situ micropillar compression studies show that nanocrystalline CoAl with thick GBs exhibits ultrahigh yield strength, exceeding 4.5 gigapascals. Unexpectedly, nanocrystalline CoAl intermetallics also show prominent work hardening to a flow stress of 5.7 gigapascals up to 20% compressive strain. Transmission electron microscopy studies show that deformation induces abundant dislocations inside CoAl grains with thick GBs, which accommodate plastic deformation. Molecular dynamics simulations reveal that the Co-rich thick GBs play a vital role in promoting nucleation of dislocations at the Co/CoAl interfaces, thereby enhancing the plasticity of the intermetallics. This study provides a perspective to promoting the plasticity of intermetallics via the introduction of thick GBs.

19.
Nano Lett ; 21(15): 6480-6486, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324350

RESUMO

Lower coercivity (HC) and magnetic anisotropy (K1) coupled with high mechanical strength are essential properties for Co-based soft magnetic thin films; however, the strength-coercivity trade-off limits their development. Co with face centered cubic structure (fcc) exhibits lower HC and K1 than its grand hexagonal close packed structure (hcp); however, metastable fcc-phase Co is hard to stabilize. Here, by using Cu (100) seed layer, we synthesized micron-thick fcc Co films with self-formed three-dimensional nanoscale stacking faults (3D-nSFs) that could achieve high strengths without sacrificing soft magnetic properties. The 3D-nSFs, induced by the Co/Cu interface, could not only stabilize the metastable fcc Co to yield lower HC but also impede dislocation motion to strengthen Co films. More importantly, we successfully tailored the density of 3D-nSFs and confirmed a large variation in magnetic coercivity (by 100%) and indentation hardness (by 25%). This work provides a new strategy for integrated performance optimization by interface design and strain engineering.

20.
ACS Appl Mater Interfaces ; 13(9): 11369-11384, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33625223

RESUMO

The inkjet printing of metal electrodes on polymer films is a desirable manufacturing process due to its simplicity but is limited by the lack of thermal stability and serious delaminating flaws in various aqueous and organic solutions. Kapton, adopted worldwide due to its superior thermal durability, allows the high-temperature sintering of nanoparticle-based metal inks. By carefully selecting inks (Ag and Au) and Kapton substrates (Kapton HN films with a thickness of 135 µm and a thermal resistance of up to 400 °C) with optimal printing parameters and simplified post-treatments (sintering), outstanding film integrity, thermal stability, and antidelaminating features were obtained in both aqueous and organic solutions without any pretreatment strategy (surface modification). These films were applied in four novel devices: a solid-state ion-selective (IS) nitrate (NO3-) sensor, a single-stranded DNA (ssDNA)-based mercury (Hg2+) aptasensor, a low-cost protein printed circuit board (PCB) sensor, and a long-lasting organic thin-film transistor (OTFT). The IS NO3- sensor displayed a linear sensitivity range between 10-4.5 and 10-1 M (r2 = 0.9912), with a limit of detection of 2 ppm for NO3-. The Hg2+ sensor exhibited a linear correlation (r2 = 0.8806) between the change in the transfer resistance (RCT) and the increasing concentration of Hg2+. The protein PCB sensor provided a label-free method for protein detection. Finally, the OTFT demonstrated stable performance, with mobility values in the linear (µlin) and saturation (µsat) regimes of 0.0083 ± 0.0026 and 0.0237 ± 0.0079 cm2 V-1 S-1, respectively, and a threshold voltage (Vth) of -6.75 ± 3.89 V.


Assuntos
Imidas/química , Mercúrio/análise , Nitratos/análise , Polímeros/química , Proteínas/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Periféricos de Computador , DNA/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Tinta , Limite de Detecção , Prata/química , Transistores Eletrônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...