Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 30(5): 559-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22731768

RESUMO

Epothilone A (EpoA) is under investigation as an antitumor agent. To provide better understanding of the activity of EpoA against cancers, by theoretical studies such as using docking method, molecular dynamics simulation and density functional theory calculations, we identify several key residues located on ß-tubulin as the active sites to establish an active pocket responsible for interaction with EpoA. Eight residues (Arg276, Asp224, Asp26, His227, Glu27, Glu22, Thr274, and Met363) are identified as the active sites to form the active pocket on ß-tubulin. The interaction energy is predicted to be -121.3 kJ/mol between EpoA and ß-tubulin. In the mutant of ß-tubulin at Thr274Ile, three residues (Arg359, Glu27, and His227) are identified as the active sites for the binding of EpoA. In the mutant of ß-tubulin at Arg282Gln, three residues (Arg276, Lys19, and His227) serve as the active sites. The interaction energy is reduced to -77.2 kJ/mol between EpoA and Arg282Gln mutant and to -50.2 kJ/mol between EpoA and Thr274Ile mutant. The strong interaction with ß-tubulin is significant to EpoA's activity against cancer cells. When ß-tubulin is mutated either at Arg282Gln or at Thr274Ile, the decreased strength of interaction explains the activity reduced for EpoA. Therefore, this work shows that the structural basis of the active pocket plays an important role in regulating the activity for EpoA with a Taxol-like mechanism of action to be promoted as an antitumor agent.


Assuntos
Epotilonas/química , Epotilonas/metabolismo , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Domínio Catalítico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Neoplasias/tratamento farmacológico , Paclitaxel/química , Paclitaxel/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
2.
J Mol Model ; 18(1): 377-91, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21537957

RESUMO

Paclitaxel (PTX) is used to treat various cancers, but it also causes serious side effects and resistance. To better design similar compounds with less toxicity and more activity against drug-resistant tumors, it is important to clearly understand the PTX-binding pocket formed by the key residues of active sites on ß-tubulin. Using a docking method, molecular dynamics (MD) simulation and density functional theory (DFT), we identified some residues (such as Arg278, Asp26, Asp226, Glu22, Glu27, His229, Arg369, Lys218, Ser277 and Thr276) on ß-tubulin that are the active sites responsible for interaction with PTX. Another two residues, Leu371 and Gly279, also likely serve as active sites. Most of these sites contact with the "southern hemisphere" of PTX; only one key residue interacts with the "northern hemisphere" of PTX. These key residues can be divided into four groups, which serve as active compositions in the formation of an active pocket for PTX binding to ß-tubulin. This active binding pocket enables a very strong interaction (the strength is predicted to be in the range of -327.8 to -365.7 kJ mol(-1)) between ß-tubulin and PTX, with various orientated conformations. This strong interaction means that PTX possesses a high level of activity against cancer cells, a result that is in good agreement with the clinical mechanism of PTX. The described PTX pocket and key active residues will be applied to probe the mechanism of tumor cells resistant to PTX, and to design novel analogs with superior properties.


Assuntos
Simulação de Dinâmica Molecular , Paclitaxel/química , Paclitaxel/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Sítios de Ligação , Conformação Molecular , Ligação Proteica , Estrutura Terciária de Proteína
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(5): 1428-34, 2011 May.
Artigo em Chinês | MEDLINE | ID: mdl-21800615

RESUMO

The bioorganic carbon contents and chemical element compositions in six kinds of cereals: paddy (rice), wheat (flour), soybean, millet, sorghum and corn were determined by X-ray fluorescence (XRF) spectrum, meanwhile a new method was established to probe their protein contents. In the cereals, the average bioorganic carbon content is about 440%. The highest protein content is 42.74% from soybean, and other protein content is 28.56% in millet, 27.57% in wheat, 24.99% in corn, 22.21% in sorghum, but only 20.31% in rice. Based on our new definition of carbon chemical circulation presented in the current work, the authors have found that in 2009 humankind used bioorganic carbon to discharge CO2 into the earth's atmosphere that accounts for one percent of the total CO2 discharge, and consumed organic carbon to release CO2 into the earth's atmosphere, accounting for 10.73% of the total CO2 discharge. The clear definition of carbon chemical circulation and the discharged CO2 content from the distinct types of carbon compounds would advance the study on carbon chemical circulation and the atmospheric CO2 greenhouse effect. Our work further found that it takes eight years to circulate the total earth's atmospheric CO2. The short period shows the sensitivity for CO2 to keep its dynamical equilibrium in the earth's atmosphere. However, no experimental data has been reported to prove a heavy destructive greenhouse effect of CO2 existing in the earth's atmosphere.


Assuntos
Carbono/química , Grão Comestível/química , Espectrometria por Raios X , Atmosfera , Dióxido de Carbono , Fluorescência , Efeito Estufa
4.
J Biomol Struct Dyn ; 28(6): 881-93, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21469749

RESUMO

Poly(ADP-ribose) polymerase (PARP) is regarded as a target protein for paclitaxel (PTX) to bind. An important issue is to identify the key residues as active sites for PTX interacting with PARP, which will help to understand the potential drug activity of PTX against cancer cells. Using docking method and MD simulation, we have constructed a refined structure of PTX docked on the catalytic function domain of PARP (PDB code: 1A26). The residues Glu327(988), Tyr246(907), Lys242(903), His165(826), Asp105(766), Gln102(763) and Gln98(759) in PARP are identified as potential sites involved in interaction with PTX according to binding energy (E(b)) between PTX and single residue calculated with B3LYP/6-31G(d,p). These residues form an active binding pocket located on the surface of the catalytic fragment, possibly interacting with the required groups of PTX leading to its activity against cancer cells. It is noted that most of the active sites make conatct with the "southern hemisphere" of PTX except for one residue, Tyr246(907), which interacts with the "northern hemisphere" of PTX. The conformation of PTX in complex with the catalytic fragment is observed as being T-shaped, similar to that complexed with ß-tubulin. The total Eb of -269.9 kJ/mol represents the potent interaction between PTX and the catalytic fragment, implying that PTX can readily bind to the active pocket. The tight association of PTX with the catalytic fragment would inhibit PARP activation, suggesting a potential application of PTX as an effective antineoplastic agent.


Assuntos
Simulação de Dinâmica Molecular , Paclitaxel/química , Paclitaxel/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Sítios de Ligação , Biocatálise , Domínio Catalítico , Metabolismo Energético , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Tubulina (Proteína)/metabolismo
5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(7): 1983-9, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20828015

RESUMO

Elemental compositions in spider and silkworm silks were determined by X-ray fluorescence (XRF) spectrum to probe the silk-forming mechanisms and an elemental basis for spider silk with excellent characteristics. XRF analysis demonstrates that in the silkworm silk, the elemental content is 47.10% for C, 29.92% for O and 16. 52% for N, including metal elemental contents: 0.166 2% for Ca, 0.104 0% for Mg and 0.039 5% for K, while Na, Zn, Ni, Fe and Cr show less micro quantity. Due to relative high quantity for Ca and Mg, they both play an important role in the silk-forming mechanism by silkworm. In the spider silk, the determined main nonmetal elemental contents are 44.09% for C, 26.64% for O and 22.34% for N. The high content of nitrogen may be an elemental basis for spider silk with excellent characteristic. The main metal elemental contents are 0.268 0% for Na, 0.081 4% for K and 0.011 6% for Mg, while Ca, Zn, Ni, Cu and Cr possess less micro quantity in the spider silk. Because of relative high quantity for Na and K, they both play an important role in the silk-forming mechanism by spider. The elemental compositions investigated by using mathematic statistic method are quite in agreement with those demonstrated by using XRF spectrum, which validates the experimentally determined elemental compositions in the spider and silkworm silks.


Assuntos
Bombyx , Seda/química , Aranhas , Animais , Fluorescência , Metais , Análise Espectral , Raios X
6.
Artigo em Inglês | MEDLINE | ID: mdl-15147696

RESUMO

In this work, we employ cyanobacteria, Spirulina platensis, and separate their photosynthetic apparatus, phycobilisome (PBS), thylakoid membrane and phycobilisome-thylakoid membrane complex. The steady state absorption spectra, fluorescence spectra and corresponding deconvoluted spectra and picosecond time-resolved spectra are used to investigate the energy transfer process in phycobilisome-thylakoid membrane complex. The results on steady state spectra show chlorophylls of the photosystem II are able to transfer excitation energy to phycobilisome with Chla molecules selectively excited. The decomposition of the steady state spectra further suggest the uphill energy transfer originate from chlorophylls of photosystem II to cores of phycobilisome, while rods and cores of phycobilisome cannot receive energy from the chlorophylls of photosystem I. The time constant for the back energy transfer process is 18 ps.


Assuntos
Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/química , Clorofila/metabolismo , Transferência de Energia , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/química , Ficobilissomas/química , Ficobilissomas/metabolismo , Espectrometria de Fluorescência , Espectrofotometria , Tilacoides/química , Tilacoides/metabolismo
7.
Photosynth Res ; 82(1): 83-94, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16228615

RESUMO

We have studied, by means of sub-microsecond time-resolved absorption spectroscopy, the triplet-excited state dynamics of carotenoids (Cars) in the intermediate-light adapted LH2 complex (ML-LH2) from Rhodopseudomonas palustris containing Cars with different numbers of conjugated double bonds. Following pulsed photo-excitation at 590 nm at room temperature, rapid spectral equilibration was observed either as a red shift of the isosbestic wavelength on a time scale of 0.6-1.0 mus, or as a fast decay in the shorter-wavelength side of the T(n)<--T(1) absorption of Cars with a time constant of 0.5-0.8 mus. Two major spectral components assignable to Cars with 11 and 12 conjugated double bonds were identified. The equilibration was not observed in the ML-LH2 at 77 K, or in the LH2 complex from Rhodobacter sphaeroides G1C containing a single type of Car. The unique spectral equilibration was ascribed to temperature-dependent triplet excitation transfer among different Car compositions. The results suggest that Cars of 11 and 12 conjugated bonds, both in close proximity of BChls, may coexist in an alpha,beta-subunit of the ML-LH2 complex.

8.
J Comput Chem ; 25(2): 258-64, 2004 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-14648624

RESUMO

The reactions of BH2+ with propylene (CH2=CHCH3) to form both the adducts BC3H8+ and the H2-elimination products BC3H6+ + H2 have been investigated at the density functional B3LYP/6-311G(d,p) level of theory. It is shown that the electrophilic attacks of BH2+ towards two olefinic carbons of H2C=CHCH3 and two subsequent 1,3-H-shifts may form four low-lying BC3H8+ isomers (with the relative energies in parentheses in kcal/mol): 1 BH2+.CH2CHCH3 (0.0), 1' BH2+.CH3CHCH2 (6.3), 3 BHCH2CH2CH3+ (4.3), and 4 BHCH(CH3)2+ (5.0), respectively. On the other hand, further H2-eliminations may also occur easily between B-C bonds of isomers 1 and 1' and between C-C bonds of isomers 3 and 4 to form two dissociation products (P1) HBCHCHCH3+ + H2 and (P2) HBC(CH3)CH2+ + H2, with H2-elimination from isomer 1 to be energetically most favorable. According to our calculated mechanism, the collisional stabilization processes of low-lying isomers 1, 1', 3, and 4 may compete extensively with their H2-eliminations processes for the title reaction, leading mainly to some linear carborane cations. This study may be helpful for understanding the stereochemical aspects of borohydride cations towards alkylenes.

9.
J Comput Chem ; 24(3): 340-4, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12548725

RESUMO

The mechanism of cycloreversion of cyclobutane radical anion (c-C(4)H(8) (-)) has been investigated at the UB3LYP/6-31++G(d,p) level, and compared with those of neutral c-C(4)H(8) and c-C(4)H(8) (+) radical cation. Although both c-C(4)H(8) (-) and C(2)H(4) are shown to be Rydberg states unstable with respect to electron ejection, the activation barrier for the "rotating" cycloreversion of c-C(4)H(8) (-) (37.3 kcal/mol) is lower by about 25.2 kcal/mol than that of c-C(4)H(8), and even the intervention of tetramethylene radical anion intermediate may reduce the activation barrier for the cycloreversion of c-C(4)H(8) by about 8.4 kcal/mol, mainly due to stronger electron-deficiency of intermediate biradical species than close-shell cyclobutanes. For the cycloreversion for c-C(4)H(8) (-), side isomerization reaction may be efficiently prevented by the low kinetic stability of tetramethylene radical anion intermediate towards dissociation, just different from the radical cation case. Our theoretical results have suggested the possibility of electron-attachment catalysis of the cycloreversion of some electron-deficient substituted cyclobutanes.

10.
Photosynth Res ; 74(1): 11-36, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-16228542

RESUMO

The mechanism of the primary electron transfer (ET) process in the photosynthetic reaction center (PRC) of Rhodobacter sphaeroides has been studied with quantum chemistry method of ab initio density functional theory (DFT) (B3LYP/6-31G) based on the optimized X-ray crystallographic structure. The calculation was carried out on different structural levels. The electronic structure of pigment molecules was first studied, and then the influence of the neighboring protein was taken into account at three approximation levels: (a) the surrounding proteins were treated as a homogeneous medium with a uniform dielectric constant (SCRF); (b) both the influence of axial coordination of His to the special pair P and ABChl as, and the hydrogen bonds between related residues and P and also BPhas were included; and (c) the influence of the electronic structure of the protein subunit chains as a whole was studied. The results suggest that: (1) according to the composition of the HOMO and LUMO of P, there might be a charge-separated state of (BChl(L) (+)BChl(M) (-)) for the excited state of P; (2) to treat the protein surroundings as a homogeneous medium is not sufficient. Different interactions between pigment molecules and related residues play different roles in the ET process; (3) the axial coordination of His to P raises the E (LUMO) of P greatly, and it is very important for the ET process to occur in the PRC of wild-type bacterium; the axial coordination of His to ABChl as also raises their E (LUMO) significantly; (4) the hydrogen-bonds between amino acid residues and P and also BPh as depress the E (LUMO) of the pigment molecules to some extent, which makes the E (LUMO) of P lower than those of ABChlas, and the E (LUMO) of BPh a (L) lower than that of BPh a (M). Consequently, the ET process from P to BPh a (L) does not, according to our calculation model, occur via ABChl a (L). The possibility of the ET pathway from P to BPh a (L) via ABChl a (L) was discussed; (5) the frontier orbitals of protein subunit chains L and M are localized at the random coil area and the alpha-helix areas, respectively. Results mentioned above support the fact that the ET process proceeds in favourable circumstances along the branch L.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...