Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(20): 13219-13229, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28492618

RESUMO

We discovered several new energetically competitive structures of NbSe2 using the multi-algorithm collaborative (MAC) crystal structure prediction algorithm combined with the density functional theory. It was found that the coordination number of Nb in NbSe2 is increased from 6 to 7, and then to 8 with increasing pressure. Furthermore, it was unexpected that an Se atom would be squeezed to the center of a cage formed by 12 other Se atoms and then have 12-fold coordination when the pressure was increased to 130.4 GPa. The 12-coordination metalloid atom has never been discovered in other transition metal dichalcogenides. The new C2/m, I4/mmm, and P4/mmm NbSe2 were verified to be stable under both dynamically and mechanically stabile conditions. It is especially noteworthy that the new C2/m-NbSe2 was predicted to be potentially synthesized at high pressure and recovered under ambient conditions. A detailed high-pressure and high-temperature phase diagram was constructed based on the quasi-harmonic approximation up to 200 GPa, and the synthesis conditions of different new NbSe2 materials were also analyzed. All the discoveries in this study will guide the future synthesis of new NbSe2 materials at specific pressure and under temperature conditions and also help to further understand other transition metal dichalcogenides.

2.
J Chem Phys ; 143(11): 114101, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26395681

RESUMO

A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curve of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.

3.
J Phys Condens Matter ; 25(21): 215401, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23649105

RESUMO

Using in situ high-pressure x-ray diffraction and ab initio techniques, a high-pressure structure of LiTaO3 has been determined to be an orthorhombic phase with the space group Pnma. At ambient temperature, the transition pressure from the R3c phase (the ordinary phase at ambient pressure and temperature) to the Pnma phase is about 33.0 GPa and the phase transition is reversible. This phase transition can be reproduced qualitatively by ab initio calculations, but with a lower transition pressure of 19.9 GPa. The equation of state of LiTaO3 is also reported.

4.
Phys Chem Chem Phys ; 13(4): 1669-75, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21103579

RESUMO

The phonon instability and thermal equation of state of Mo are extensively investigated using density functional theory. The calculated phonon dispersion curves agree well with experiments. Under compression, we captured a large softening in the transverse acoustic (TA) branches of body-centred cubic Mo. When the pressure is raised to 716 GPa, the frequencies along Γ-N in the TA branches soften to imaginary frequencies, indicating structural instability. For face-centred cubic Mo, the phonon calculations predicted the stability by promoting the frequencies from imaginary to real. Within quasi-harmonic approximation, we predicted the thermal equation of state and some other properties including the thermal expansion coefficient α, product αK(T), heat capacity C(V), entropy S, Grüneisen parameter γ and Debye temperature Θ(D). The melting curves of Mo were also obtained successfully.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...