Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Biophys Rep ; 8(4): 205-211, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37288006

RESUMO

Temperature-sensitive ion channels, such as those from the TRP family (thermo-TRPs) present in all animal cells, serve to perceive heat and cold sensations. A considerable number of protein structures have been reported for these ion channels, providing a solid basis for revealing their structure-function relationship. Previous functional studies suggest that the thermosensing ability of TRP channels is primarily determined by the properties of their cytosolic domain. Despite their importance in sensing and wide interests in the development of suitable therapeutics, the precise mechanisms underlying acute and steep temperature-mediated channel gating remain enigmatic. Here, we propose a model in which the thermo-TRP channels directly sense external temperature through the formation and dissociation of metastable cytoplasmic domains. An open-close bistable system is described in the framework of equilibrium thermodynamics, and the middle-point temperature T½ similar to the V½ parameter for a voltage-gating channel is defined. Based on the relationship between channel opening probability and temperature, we estimate the change in entropy and enthalpy during the conformational change for a typical thermosensitive channel. Our model is able to accurately reproduce the steep activation phase in experimentally determined thermal-channel opening curves, and thus should greatly facilitate future experimental verification.

2.
Nat Commun ; 12(1): 3474, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108458

RESUMO

Sodium/proton exchanger 1 (NHE1) is an electroneutral secondary active transporter present on the plasma membrane of most mammalian cells and plays critical roles in regulating intracellular pH and volume homeostasis. Calcineurin B-homologous protein 1 (CHP1) is an obligate binding partner that promotes NHE1 biosynthetic maturation, cell surface expression and pH-sensitivity. Dysfunctions of either protein are associated with neurological disorders. Here, we elucidate structures of the human NHE1-CHP1 complex in both inward- and inhibitor (cariporide)-bound outward-facing conformations. We find that NHE1 assembles as a symmetrical homodimer, with each subunit undergoing an elevator-like conformational change during cation exchange. The cryo-EM map reveals the binding site for the NHE1 inhibitor cariporide, illustrating how inhibitors block transport activity. The CHP1 molecule differentially associates with these two conformational states of each NHE1 monomer, and this association difference probably underlies the regulation of NHE1 pH-sensitivity by CHP1.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Trocador 1 de Sódio-Hidrogênio/química , Trocador 1 de Sódio-Hidrogênio/metabolismo , Sítios de Ligação , Transporte Biológico , Microscopia Crioeletrônica , Guanidinas/metabolismo , Humanos , Modelos Moleculares , Complexos Multiproteicos , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Sulfonas/metabolismo
3.
Methods Enzymol ; 649: 371-396, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33712193

RESUMO

Mitochondria are important not only to healthy but also dying cells. In particular, apoptotic cell death initiates when the mitochondrial outer membrane is permeabilized by Bax, a protein of the Bcl-2 family. Bax shares a structural fold with some α-helical bacterial pore-forming toxins before these proteins actively engage membranes. Despite decades of intensive research, the structures of the pores formed by these proteins are mostly unknown, mainly because the pores are assembled by different numbers of the proteins whose conformation and interaction are highly dynamic. Site-specific crosslinking of the pore-forming proteins in cellular membranes where the pores are assembled is a powerful approach to assess the biological pore structure, dynamics and function. In this chapter, we describe a cysteine-based site-specific crosslinking protocol for the Bax protein in the mitochondrial membrane. We discuss the expected results and the resulting structural-functional models for the pore-forming Bax oligomer, in comparison with other crosslinking approaches that have been used to study other mitochondrial protein complexes. At the end, we highlight the advantages of the crosslinking approaches as well as the limitations and alternative approaches.


Assuntos
Cisteína , Membranas Mitocondriais , Apoptose , Membranas Mitocondriais/metabolismo , Porinas , Proteína X Associada a bcl-2/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(49): 31166-31176, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229520

RESUMO

Multiple resistance and pH adaptation (Mrp) complexes are sophisticated cation/proton exchangers found in a vast variety of alkaliphilic and/or halophilic microorganisms, and are critical for their survival in highly challenging environments. This family of antiporters is likely to represent the ancestor of cation pumps found in many redox-driven transporter complexes, including the complex I of the respiratory chain. Here, we present the three-dimensional structure of the Mrp complex from a Dietzia sp. strain solved at 3.0-Å resolution using the single-particle cryoelectron microscopy method. Our structure-based mutagenesis and functional analyses suggest that the substrate translocation pathways for the driving substance protons and the substrate sodium ions are separated in two modules and that symmetry-restrained conformational change underlies the functional cycle of the transporter. Our findings shed light on mechanisms of redox-driven primary active transporters, and explain how driving substances of different electric charges may drive similar transport processes.


Assuntos
Actinobacteria/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Trocadores de Sódio-Hidrogênio/ultraestrutura , Actinobacteria/química , Transporte Biológico , Microscopia Crioeletrônica , Cristalografia por Raios X , Complexo I de Transporte de Elétrons/ultraestrutura , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Complexos Multiproteicos/química , Oxirredução , Bombas de Próton/química , Bombas de Próton/genética , Bombas de Próton/ultraestrutura , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética
5.
Protein Sci ; 29(12): 2363-2374, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33007128

RESUMO

Human ATP-binding cassette transporter 6 of subfamily B (ABCB6) is an ABC transporter involved in the translocation toxic metals and anti-cancer drugs. Using cryo-electron microscopy, we determined the molecular structure of full-length ABCB6 in an apo state. The structure of ABCB6 unravels the architecture of a full-length ABCB transporter that harbors two N-terminal transmembrane domains which is indispensable for its ATPase activity in our in vitro assay. A slit-like substrate binding pocket of ABCB6 may accommodate the planar shape of porphyrins, and the existence of a secondary cavity near the mitochondrial intermembrane space side would further facilitate substrate release. Furthermore, the ATPase activity of ABCB6 stimulated with a variety of porphyrin substrates showed different profiles in the presence of glutathione (GSH), suggesting the action of a distinct substrate translocation mechanism depending on the use of GSH as a cofactor.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Microscopia Crioeletrônica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Glutationa/química , Glutationa/metabolismo , Células HEK293 , Humanos , Porfirinas/química , Porfirinas/metabolismo , Domínios Proteicos
6.
Protein Sci ; 29(8): 1803-1815, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32557855

RESUMO

Calcium homeostasis modulators (CALHMs/CLHMs) comprise a family of pore-forming protein complexes assembling into voltage-gated, Ca2+ -sensitive, nonselective channels. These complexes contain an ion-conduction pore sufficiently wide to permit the passing of ATP molecules serving as neurotransmitters. While their function and structure information is accumulating, the precise mechanisms of these channel complexes remain to be full understood. Here, we present the structure of the Caenorhabditis elegans CLHM1 channel in its open state solved through single-particle cryo-electron microscopy at 3.7-Å resolution. The transmembrane region of the channel structure of the dominant class shows an assembly of 10-fold rotational symmetry in one layer, and its cytoplasmic region is involved in additional twofold symmetrical packing in a tail-to-tail manner. Furthermore, we identified a series of amino acid residues critical for the regulation of CeCLHM1 channel using functional assays, electrophysiological analyses as well as structural-based analysis. Our structure and function analyses provide new insights into the mechanisms of CALHM channels.


Assuntos
Proteínas de Caenorhabditis elegans/ultraestrutura , Caenorhabditis elegans/ultraestrutura , Canais de Cálcio/ultraestrutura , Dobramento de Proteína , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Canais de Cálcio/metabolismo , Microscopia Crioeletrônica , Domínios Proteicos
7.
Biophys J ; 116(12): 2296-2303, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31146923

RESUMO

Bacterial multidrug-resistance transporters of the major facilitator superfamily are distinguished by their extraordinary ability to bind structurally diverse substrates, thus serving as a highly efficient tool to protect cells from multiple toxic substances present in their environment, including antibiotic drugs. However, details of the dynamic conformational changes of the transport cycle involved remain to be elucidated. Here, we used the single-molecule fluorescence resonance energy transfer technique to investigate the conformational behavior of the Escherichia coli multidrug transporter MdfA under conditions of different substrates, pH, and alkali metal ions. Our data show that different substrates exhibit distinct effects on both the conformational distribution and transition rate between two major conformations. Although the cationic substrate tetraphenylphosphonium favors the outward-facing conformation, it has less effect on the transition rate. In contrast, binding of the electroneutral substrate chloramphenicol tends to stabilize the inward-facing conformation and decreases the transition rate. Therefore, our study supports the notion that the MdfA transporter uses distinct mechanisms to transport electroneutral and cationic substrates.


Assuntos
Resistência a Múltiplos Medicamentos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Potássio/farmacologia , Conformação Proteica
8.
Protein Sci ; 28(3): 502-512, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30549351

RESUMO

Transmembrane electrostatic membrane potential is a major energy source of the cell. Importantly, it determines the structure as well as function of charge-carrying membrane proteins. Here, we discuss the relationship between membrane potential and membrane proteins, in particular whether the conformation of these proteins is integrally connected to the membrane potential. Together, these concepts provide a framework for rationalizing the types of conformational changes that have been observed in membrane proteins and for better understanding the electrostatic effects of the membrane potential on both reversible as well as unidirectional dynamic processes of membrane proteins.


Assuntos
Membrana Celular/metabolismo , Potenciais da Membrana , Proteínas de Membrana/metabolismo , Animais , Membrana Celular/química , Humanos , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Conformação Proteica , Eletricidade Estática
9.
Nat Struct Mol Biol ; 25(6): 488-495, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29808000

RESUMO

Platelet-activating-factor receptor (PAFR) responds to platelet-activating factor (PAF), a phospholipid mediator of cell-to-cell communication that exhibits diverse physiological effects. PAFR is considered an important drug target for treating asthma, inflammation and cardiovascular diseases. Here we report crystal structures of human PAFR in complex with the antagonist SR 27417 and the inverse agonist ABT-491 at 2.8-Å and 2.9-Å resolution, respectively. The structures, supported by molecular docking of PAF, provide insights into the signal-recognition mechanisms of PAFR. The PAFR-SR 27417 structure reveals an unusual conformation showing that the intracellular tips of helices II and IV shift outward by 13 Å and 4 Å, respectively, and helix VIII adopts an inward conformation. The PAFR structures, combined with single-molecule FRET and cell-based functional assays, suggest that the conformational change in the helical bundle is ligand dependent and plays a critical role in PAFR activation, thus greatly extending knowledge about signaling by G-protein-coupled receptors.


Assuntos
Glicoproteínas da Membrana de Plaquetas/química , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Sítios de Ligação , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligação de Hidrogênio , Imidazóis/farmacologia , Indóis/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Inibidores da Agregação Plaquetária/farmacologia , Glicoproteínas da Membrana de Plaquetas/agonistas , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Conformação Proteica , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Tiazóis/farmacologia
10.
Biophys Rep ; 4(6): 300-319, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596139

RESUMO

Ion channels are essential for cellular signaling. Voltage-gated ion channels (VGICs) are the largest and most extensively studied superfamily of ion channels. They possess modular structural features such as voltage-sensing domains that encircle and form mechanical connections with the pore-forming domains. Such features are intimately related to their function in sensing and responding to changes in the membrane potential. In the present work, we discuss the thermodynamic mechanisms of the VGIC superfamily, including the two-state gating mechanism, sliding-rocking mechanism of the voltage sensor, subunit cooperation, lipid-infiltration mechanism of inactivation, and the relationship with their structural features.

11.
Protein Sci ; 27(3): 595-613, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29193407

RESUMO

Multidrug resistance (MDR) presents a growing challenge to global public health. Drug extrusion transporters play a critical part in MDR; thus, their mechanisms of substrate recognition are being studied in great detail. In this work, we review common structural features of key transporters involved in MDR. Based on our membrane potential-driving hypothesis, we propose a general energy-coupling mechanism for secondary-active antiporters. This putative mechanism provides a common framework for understanding poly-specificity of most-if not all-MDR transporters.


Assuntos
Bactérias/metabolismo , Resistência a Múltiplos Medicamentos , Proteínas de Membrana Transportadoras/química , Antiporters/química , Proteínas de Bactérias/química , Transporte Biológico , Humanos , Modelos Moleculares , Termodinâmica
12.
Biophys Rep ; 3(4): 73-84, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238744

RESUMO

Prokaryotic AcrB-like proteins belong to a family of transporters of the RND superfamily, and as main contributing factor to multidrug resistance pose a tremendous threat to future human health. A unique feature of AcrB transporters is the presence of two separate domains responsible for carrying substrate and generating energy. Significant progress has been made in elucidating the three-dimensional structures of the homo-trimer complexes of AcrB-like transporters, and a three-step functional rotation was identified for this class of transporters. However, the detailed mechanisms for the transduction of the substrate binding signal, as well as the energy coupling processes between the functionally distinct domains remain to be established. Here, we propose a model for the interdomain communication in AcrB that explains how the substrate binding signal from the substrate-carrier domain triggers protonation in the transmembrane domain. Our model further provides a plausible mechanism that explains how protonation induces conformational changes in the substrate-carrier domain. We summarize the thermodynamic principles that govern the functional cycle of the AcrB trimer complex.

13.
Proc Natl Acad Sci U S A ; 114(38): 10089-10094, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28878024

RESUMO

Sugar Will Eventually be Exported Transporters (SWEETs) are recently identified sugar transporters that can discriminate and transport di- or monosaccharides across a membrane following the concentration gradient. SWEETs play key roles in plant biological processes, such as pollen nutrition, nectar secretion, seed filling, and phloem loading. SWEET13 from Arabidopsis thaliana (AtSWEET13) is an important sucrose transporter in pollen development. Here, we report the 2.8-Å resolution crystal structure of AtSWEET13 in the inward-facing conformation with a substrate analog, 2'-deoxycytidine 5'-monophosphate, bound in the central cavity. In addition, based on the results of an in-cell transport activity assay and single-molecule Förster resonance energy transfer analysis, we suggest a mechanism for substrate selectivity based on the size of the substrate-binding pocket. Furthermore, AtSWEET13 appears to form a higher order structure presumably related to its function.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Membrana Transportadoras/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Desoxicitidina Monofosfato , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Relação Estrutura-Atividade
14.
Nat Commun ; 8: 15948, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28885614

RESUMO

In Gram-negative bacteria, lipid modification of proteins is catalysed in a three-step pathway. Apolipoprotein N-acyl transferase (Lnt) catalyses the third step in this pathway, whereby it transfers an acyl chain from a phospholipid to the amine group of the N-terminal cysteine residue of the apolipoprotein. Here, we report the 2.6-Å crystal structure of Escherichia coli Lnt. This enzyme contains an exo-membrane nitrilase domain fused to a transmembrane (TM) domain. The TM domain of Lnt contains eight TM helices which form a membrane-embedded cavity with a lateral opening and a periplasmic exit. The nitrilase domain is located on the periplasmic side of the membrane, with its catalytic cavity connected to the periplasmic exit of the TM domain. An amphipathic lid loop from the nitrilase domain interacts with the periplasmic lipid leaflet, forming an interfacial entrance from the lipid bilayer to the catalytic centre for both the lipid donor and acceptor substrates.


Assuntos
Aciltransferases/química , Cristalografia por Raios X/métodos , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Aciltransferases/genética , Aminoidrolases/química , Domínio Catalítico , Proteínas de Escherichia coli/genética , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Mutação , Periplasma/enzimologia , Fosfolipídeos/química , Conformação Proteica
15.
Biochem Biophys Res Commun ; 491(3): 603-608, 2017 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-28760338

RESUMO

The heterotrimeric G proteins (Gαßγ) act as molecular switches to mediate signal transduction from G protein-coupled receptors to downstream effectors. Upon interaction with an activated receptor, G protein exchanges its bound GDP with GTP, stimulating downstream signal transmission. Release of GDP requires a structural rearrangement between the GTPase domain and helical domain of the Gα subunit. Here, we used single molecule fluorescence resonance energy transfer (smFRET) technique to study the conformational dynamics of these two domains in the apo state and in the binding of different ligands. Direct imaging of individual molecules showed that the Giα subunit is highly dynamic, and at least three major conformations of Giα could be observed in the apo state. Upon binding of GDP, Giα becomes dramatically less dynamic, resulting in a closed conformation between the two domains. We postulate that changes between the three conformations are sequential, and the three conformations appear to have distinct affinities toward GDP.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Guanosina Difosfato/química , Imagem Molecular/métodos , Sítios de Ligação , Ativação Enzimática , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Subunidades Proteicas
16.
Appl Environ Microbiol ; 83(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821550

RESUMO

n-Alkanes are ubiquitous in nature and are widely used by microorganisms as carbon sources. Alkane hydroxylation by alkane monooxygenases is a critical step in the aerobic biodegradation of n-alkanes, which plays important roles in natural alkane attenuation and is used in industrial and environmental applications. The alkane oxidation operon, alkW1-alkX, in the alkane-degrading strain Dietzia sp. strain DQ12-45-1b is negatively autoregulated by the TetR family repressor AlkX via a product positive feedback mechanism. To predict the gene regulation mechanism, we determined the 3.1-Å crystal structure of an AlkX homodimer in a non-DNA-bound state. The structure showed traceable long electron density deep inside a hydrophobic cavity of each monomer along the long axis of the helix bundle, and further gas chromatography-mass spectrometry analysis of AlkX revealed that it contained the Escherichia coli-derived long-chain fatty acid molecules as a ligand. Moreover, an unusual structural feature of AlkX is an extra helix, α6', forming a lid-like structure with α6 covering the inducer-binding pocket and occupying the space between the two symmetrical DNA-binding motifs in one dimer, indicating a distinct conformational transition mode in modulating DNA binding. Sequence alignment of AlkX homologs from Dietzia strains showed that the residues involved in DNA and inducer binding are highly conserved, suggesting that the regulation mechanisms of n-alkane hydroxylation are possibly a common characteristic of Dietzia strains.IMPORTANCE With n-alkanes being ubiquitous in nature, many bacteria from terrestrial and aquatic environments have evolved n-alkane oxidation functions. Alkane hydroxylation by alkane monooxygenases is a critical step in the aerobic biodegradation of n-alkanes, which plays important roles in natural alkane attenuation and petroleum-contaminating environment bioremediation. The gene regulation of the most common alkane hydroxylase, AlkB, has been studied widely in Gram-negative bacteria but has been less explored in Gram-positive bacteria. Our previous study showed that the TetR family regulator (TFR) AlkX negatively autoregulated the alkane oxidation operon, alkW1-alkX, in the Gram-positive strain Dietzia sp. strain DQ12-45-1b. Although TFRs are one of the most common transcriptional regulator families in bacteria, the TFR involved in n-alkane metabolism has been reported only recently. In this study, we determined the crystal structure of AlkX, which implies a distinct DNA/ligand binding mode. Our results shed light upon the regulation mechanism of the common alkane degradation process in nature.


Assuntos
Actinomycetales/metabolismo , Alcanos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/química , Actinomycetales/química , Actinomycetales/genética , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Biodegradação Ambiental , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/genética
18.
Biophys Rep ; 2(2): 45-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018963

RESUMO

Transporters are involved in material transport, signaling, and energy input in all living cells. One of the fundamental questions about transporters is concerned with the precise role of their substrate in driving the transport process. This is particularly important for uniporters, which must utilize the chemical potential of substrate as the only energy source driving the transport. Thus, uniporters present an excellent model for the understanding of how the difference in substrate concentration across the membrane is used as a driving force. Local conformational changes induced by substrate binding are widely considered as the main mechanism to drive the functional cycle of a transporter; in addition, reducing the energy barrier of the transition state has also been proposed to drive the transporter. However, both points of view require modification to allow consolidation with fundamental thermodynamic principles. Here, we discuss the relationship between thermodynamics and kinetics of uniporters. Substrate binding-induced reduction of the transition-state energy barrier accelerates the transport process in kinetic terms, while the chemical potential of the substrate drives the process thermodynamically.

19.
Protein Sci ; 25(11): 1954-1964, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27530280

RESUMO

Mechanosensitive (MS) channels are evolutionarily conserved membrane proteins that play essential roles in multiple cellular processes, including sensing mechanical forces and regulating osmotic pressure. Bacterial MscL and MscS are two prototypes of MS channels. Numerous structural studies, in combination with biochemical and cellular data, provide valuable insights into the mechanism of energy transfer from membrane tension to gating of the channel. We discuss these data in a unified two-state model of thermodynamics. In addition, we propose a lipid diffusion-mediated mechanism to explain the adaptation phenomenon of MscS.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Membranas/química , Pressão Osmótica/fisiologia , Canais Iônicos/química , Membranas/metabolismo , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...