Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794754

RESUMO

Alcohol consumption significantly impacts disease burden and has been linked to various diseases in observational studies. However, comprehensive meta-analyses using Mendelian randomization (MR) to examine drinking patterns are limited. We aimed to evaluate the health risks of alcohol use by integrating findings from MR studies. A thorough search was conducted for MR studies focused on alcohol exposure. We utilized two sets of instrumental variables-alcohol consumption and problematic alcohol use-and summary statistics from the FinnGen consortium R9 release to perform de novo MR analyses. Our meta-analysis encompassed 64 published and 151 de novo MR analyses across 76 distinct primary outcomes. Results show that a genetic predisposition to alcohol consumption, independent of smoking, significantly correlates with a decreased risk of Parkinson's disease, prostate hyperplasia, and rheumatoid arthritis. It was also associated with an increased risk of chronic pancreatitis, colorectal cancer, and head and neck cancers. Additionally, a genetic predisposition to problematic alcohol use is strongly associated with increased risks of alcoholic liver disease, cirrhosis, both acute and chronic pancreatitis, and pneumonia. Evidence from our MR study supports the notion that alcohol consumption and problematic alcohol use are causally associated with a range of diseases, predominantly by increasing the risk.


Assuntos
Consumo de Bebidas Alcoólicas , Predisposição Genética para Doença , Análise da Randomização Mendeliana , Humanos , Masculino , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Artrite Reumatoide/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/etiologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/epidemiologia , Doença de Parkinson/genética , Doença de Parkinson/epidemiologia , Doença de Parkinson/etiologia , Fatores de Risco , Feminino
2.
Open Life Sci ; 18(1): 20220717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37800115

RESUMO

As a result of global warming, drought, flooding, change in the rainfall pattern, etc. occur frequently. All these natural disasters could cause serious damage to the food security. Soybean is one of the most important oil crops in China. In recent years, the changing climate has brought many uncertain risks to the growth and production of soybean. In this study, based on the local meteorological, soil, and soybean growth-related experimental data, the effects of high temperature and drought stress on soybean were tested. The test parameters were leaf area index (LAI) and dry matter weight, while the analytical tool used was World Food Studies Model crop model. The research was carried out in Hailun City, Heilongjiang Province, China. The results showed that warming stress shortened the growth period of soybean and reduced the LAI and dry matter accumulation. On the other hand, drought stress also showed a significant impact on the growth period as well as reduced LAI and dry matter accumulation. Comparing the whole growth as well as the flowering-stage to seed-filling-stage treatments of soybean, the results were found very similar. It indicated that the soybean growth from flowering to seed-filling stage was strongly affected by the external environmental factors. The high temperature and drought disasters in the fruiting stages would have a greater impact on the growth and production of soybean crop.

4.
BMJ Open ; 13(5): e070553, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236662

RESUMO

INTRODUCTION: In recent decades, there has been a significant increase in childlessness. This paper analysed childlessness in China, specifically examining its socio and regional disparities. METHODS: With data from China's 2020 population census, supplemented with data from China's 2010 population census and 2015 inter-censual 1% population sample survey, we used a basic indicator of age-specific childlessness proportion, a decomposition method, and probability distribution models to analyse, fit and project childlessness. RESULTS: We presented age-specific childlessness proportions for women as a whole and by socioeconomic features, decomposition and projection results. The childlessness proportion increased markedly from 2010 to 2020, reaching 5.16% for women aged 49. The proportion is highest for city women, followed by township women, and is lowest among village women, at 6.29%, 5.50% and 3.72 % for women aged 49, respectively. The proportion for women aged 49 with high college education or above was 7.98%, and only 4.42% for women with junior high school education. The proportion also exhibits marked provincial discrepancies, and the total fertility rate is negatively correlated with childlessness at the province level. The decomposition results distinguished the different contribution of change in educational structure and change in childlessness proportion for subgroups to the total childlessness proportion change. It is projected that city women, women with high education will have higher childlessness proportion, and the proportion will further increase with the rapid increase in education level and urbanisation. CONCLUSIONS: Childlessness has risen to a relatively high level, and varies among women with different characteristics. This should be taken into consideration in China's countermeasures to reduce childlessness and curtail further fertility decline accordingly.


Assuntos
Censos , Fertilidade , Feminino , Humanos , Dinâmica Populacional , Demografia , China/epidemiologia , Coeficiente de Natalidade , Países em Desenvolvimento , Economia
5.
Cell Rep Methods ; 3(4): 100454, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159668

RESUMO

Tissue clearing renders entire organs transparent to accelerate whole-tissue imaging; for example, with light-sheet fluorescence microscopy. Yet, challenges remain in analyzing the large resulting 3D datasets that consist of terabytes of images and information on millions of labeled cells. Previous work has established pipelines for automated analysis of tissue-cleared mouse brains, but the focus there was on single-color channels and/or detection of nuclear localized signals in relatively low-resolution images. Here, we present an automated workflow (COMBINe, Cell detectiOn in Mouse BraIN) to map sparsely labeled neurons and astrocytes in genetically distinct mouse forebrains using mosaic analysis with double markers (MADM). COMBINe blends modules from multiple pipelines with RetinaNet at its core. We quantitatively analyzed the regional and subregional effects of MADM-based deletion of the epidermal growth factor receptor (EGFR) on neuronal and astrocyte populations in the mouse forebrain.


Assuntos
Astrócitos , Neurônios , Animais , Camundongos , Astrócitos/classificação , Microscopia de Fluorescência , Neurônios/classificação , Prosencéfalo
6.
iScience ; 26(3): 106242, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36915679

RESUMO

The epidermal growth factor receptor (EGFR) plays a role in cell proliferation and differentiation during healthy development and tumor growth; however, its requirement for brain development remains unclear. Here we used a conditional mouse allele for Egfr to examine its contributions to perinatal forebrain development at the tissue level. Subtractive bulk ventral and dorsal forebrain deletions of Egfr uncovered significant and permanent decreases in oligodendrogenesis and myelination in the cortex and corpus callosum. Additionally, an increase in astrogenesis or reactive astrocytes in effected regions was evident in response to cortical scarring. Sparse deletion using mosaic analysis with double markers (MADM) surprisingly revealed a regional requirement for EGFR in rostrodorsal, but not ventrocaudal glial lineages including both astrocytes and oligodendrocytes. The EGFR-independent ventral glial progenitors may compensate for the missing EGFR-dependent dorsal glia in the bulk Egfr-deleted forebrain, potentially exposing a regenerative population of gliogenic progenitors in the mouse forebrain.

7.
Genes (Basel) ; 13(11)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36360244

RESUMO

The rapid rate of virus transmission and pathogen mutation and evolution highlight the necessity for innovative approaches to the diagnosis and prevention of infectious diseases. Traditional technologies for pathogen detection, mostly PCR-based, involve costly/advanced equipment and skilled personnel and are therefore not feasible in resource-limited areas. Over the years, many promising methods based on clustered regularly interspaced short palindromic repeats and the associated protein systems (CRISPR/Cas), i.e., orthologues of Cas9, Cas12, Cas13 and Cas14, have been reported for nucleic acid detection. CRISPR/Cas effectors can provide one-tube reaction systems, amplification-free strategies, simultaneous multiplex pathogen detection, visual colorimetric detection, and quantitative identification as alternatives to quantitative PCR (qPCR). This review summarizes the current development of CRISPR/Cas-mediated molecular diagnostics, as well as their design software and readout methods, highlighting technical improvements for integrating CRISPR/Cas technologies into on-site applications. It further highlights recent applications of CRISPR/Cas-based nucleic acid detection in livestock industry, including emerging infectious diseases, authenticity and composition of meat/milk products, as well as sex determination of early embryos.


Assuntos
Edição de Genes , Ácidos Nucleicos , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Gado/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Ácidos Nucleicos/genética
8.
Sci Rep ; 12(1): 18061, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302822

RESUMO

Stray non-breeding cats (stray) represent the largest heterogeneous cat population subject to natural selection, while populations of the Siamese (SIAM) and Oriental Shorthair (OSH) breeds developed through intensive artificial selection for aesthetic traits. Runs of homozygosity (ROH) and demographic measures are useful tools to discover chromosomal regions of recent selection and to characterize genetic diversity in domestic cat populations. To achieve this, we genotyped 150 stray and 26 household non-breeding cats (household) on the Illumina feline 63 K SNP BeadChip and compared them to SIAM and OSH. The 50% decay value of squared correlation coefficients (r2) in stray (0.23), household (0.25), OSH (0.24) and SIAM (0.25) corresponded to a mean marker distance of 1.12 Kb, 4.55 Kb, 62.50 Kb and 175.07 Kb, respectively. The effective population size (Ne) decreased in the current generation to 55 in stray, 11 in household, 9 in OSH and 7 in SIAM. In the recent generation, the increase in inbreeding per generation (ΔF) reached its maximum values of 0.0090, 0.0443, 0.0561 and 0.0710 in stray, household, OSH and SIAM, respectively. The genomic inbreeding coefficient (FROH) based on ROH was calculated for three length categories. The FROH was between 0.014 (FROH60) and 0.020 (FROH5) for stray, between 0.018 (FROH60) and 0.024 (FROH5) for household, between 0.048 (FROH60) and 0.069 (FROH5) for OSH and between 0.053 (FROH60) and 0.073 (FROH5) for SIAM. We identified nine unique selective regions for stray through genome-wide analyses for regions with reduced heterozygosity based on FST statistics. Genes in these regions have previously been associated with reproduction (BUB1B), motor/neurological behavior (GPHN, GABRB3), cold-induced thermogenesis (DIO2, TSHR), immune system development (TSHR), viral carcinogenesis (GTF2A1), host immune response against bacteria, viruses, chemoattractant and cancer cells (PLCB2, BAHD1, TIGAR), and lifespan and aging (BUB1B, FGF23). In addition, we identified twelve unique selective regions for OSH containing candidate genes for a wide range of coat colors and patterns (ADAMTS20, KITLG, TYR, TYRO3-a MITF regulator, GPNMB, FGF7, RAB38) as well as congenital heart defects (PDE4D, PKP2) and gastrointestinal disorders (NLGN1, ALDH1B1). Genes in stray that represent unique selective events indicate, at least in part, natural selection for environmental adaptation and resistance to infectious disease, and should be the subject of future research. Stray cats represent an important genetic resource and have the potential to become a research model for disease resistance and longevity, which is why we recommend preserving semen before neutering.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Gatos/genética , Animais , Seleção Genética , Endogamia , Genótipo , Homozigoto
9.
J Med Virol ; 94(11): 5553-5559, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35811309

RESUMO

Data on safety and immunogenicity of coronavirus disease 2019 (COVID-19) vaccinations in hepatocellular carcinoma (HCC) patients are limited. In this multicenter prospective study, HCC patients received two doses of inactivated whole-virion COVID-19 vaccines. The safety and neutralizing antibody were monitored. Totally, 74 patients were enrolled from 10 centers in China, and 37 (50.0%), 25 (33.8%), and 12 (16.2%) received the CoronaVac, BBIBP-CorV, and WIBP-CorV, respectively. The vaccines were well tolerated, where pain at the injection site (6.8% [5/74]) and anorexia (2.7% [2/74]) were the most frequent local and systemic adverse events. The median level of neutralizing antibody was 13.5 (interquartile range [IQR]: 6.9-23.2) AU/ml at 45 (IQR: 19-72) days after the second dose of vaccinations, and 60.8% (45/74) of patients had positive neutralizing antibody. Additionally, lower γ-glutamyl transpeptidase level was related to positive neutralizing antibody (odds ratio = 1.022 [1.003-1.049], p = 0.049). In conclusion, this study found that inactivated COVID-19 vaccinations are safe and the immunogenicity is acceptable or hyporesponsive in patients with HCC. Given that the potential benefits may outweigh the risks and the continuing emergences of novel severe acute respiratory syndrome coronavirus 2 variants, we suggest HCC patients to be vaccinated against COVID-19. Future validation studies are warranted.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Imunogenicidade da Vacina , Estudos Prospectivos , SARS-CoV-2 , Vacinação/efeitos adversos
10.
Virus Res ; 319: 198869, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-35842016

RESUMO

Early and rapid detection of Japanese encephalitis virus (JEV) is necessary for timely preventive and control measures. However, JEV RNA detection remains challenging due to the low level of viremia. In this study, a RApid VIsual CRISPR (RAVI-CRISPR) assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) and CRISPR/Cas12a targeting was developed for easy detection of JEV in the field. We showed successful detection of 8.97 or more copies of the C gene sequence of JEV RNA within approximately 60 min. This assay also displayed no cross-reactivity with other porcine pathogens. We applied our one-tube RAVI-CRISPR assay to 18 brain tissue sample for JE diagnosis. The results from both fluorescence intensity measurements and directly naked-eye visualization were consistent with those from real-time PCR analysis. Taken together, our results showed that one-tube RAVI-CRISPR assay is robust, convenient, sensitive, specific, affordable, and potentially adaptable to on-site detection or surveillance of JEV in clinical and vector samples.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Doenças dos Suínos , Animais , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA , RNA Viral/análise , RNA Viral/genética , Transcrição Reversa , Sensibilidade e Especificidade , Suínos
12.
Hepatol Int ; 16(3): 691-701, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35403977

RESUMO

BACKGROUND: Data on safety and immunogenicity of coronavirus disease 2019 (COVID-19) vaccination in patients with compensated (C-cirrhosis) and decompensated cirrhosis (D-cirrhosis) are limited. METHODS: In this prospective multicenter study, adult participants with C-cirrhosis and D-cirrhosis were enrolled and received two doses of inactivated whole-virion COVID-19 vaccines. Adverse events were recorded within 14 days after any dose of vaccination, and serum samples of enrolled patients were collected and tested for SARS-CoV-2 neutralizing antibodies at least 14 days after the second dose. Risk factors for negative neutralizing antibody were analyzed. RESULTS: In total, 553 patients were enrolled from 15 centers in China, including 388 and 165 patients with C-cirrhosis and D-cirrhosis. The vaccines were well tolerated, most adverse reactions were mild and transient, and injection site pain (23/388 [5.9%] vs 9/165 [5.5%]) and fatigue (5/388 [1.3%] vs 3/165 [1.8%]) were the most frequently local and systemic adverse events in both the C-cirrhosis and D-cirrhosis groups. Overall, 4.4% (16/363) and 0.3% (1/363) of patients were reported Grades 2 and 3 alanine aminotransferase (ALT) elevations (defined as ALT > 2 upper limit of normal [ULN] but ≤ 5 ULN, and ALT > 5 ULN, respectively). The positive rates of COVID-19 neutralizing antibodies were 71.6% (278/388) and 66.1% (109/165) in C-cirrhosis and D-cirrhosis groups. Notably, Child-Pugh score of B and C levels was an independent risk factor of negative neutralizing antibody. CONCLUSIONS: Inactivated COVID-19 vaccinations are safe with acceptable immunogenicity in cirrhotic patients, and Child-Pugh score of B and C levels is associated with hyporesponsive to COVID-19 vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Imunogenicidade da Vacina , Cirrose Hepática , Estudos Prospectivos , SARS-CoV-2
13.
Biomed Opt Express ; 13(1): 373, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35154877

RESUMO

[This corrects the article on p. 5214 in vol. 12, PMID: 34513252.].

15.
Clin Gastroenterol Hepatol ; 20(7): 1516-1524.e2, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34942370

RESUMO

BACKGROUND & AIMS: We aimed to assess the safety and immunogenicity of inactivated whole-virion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in patients with chronic liver diseases (CLD) in this study. METHODS: This was a prospective, multi-center, open-label study. Participants aged over 18 years with confirmed CLD and healthy volunteers were enrolled. All participants received 2 doses of inactivated whole-virion SARS-CoV-2 vaccines. Adverse reactions were recorded within 14 days after any dose of SARS-CoV-2 vaccine, laboratory testing results were collected after the second dose, and serum samples of enrolled subjects were collected and tested for SARS-CoV-2 neutralizing antibodies at least 14 days after the second dose. RESULTS: A total of 581 participants (437 patients with CLD and 144 healthy volunteers) were enrolled from 15 sites in China. Most adverse reactions were mild and transient, and injection site pain (n = 36; 8.2%) was the most frequently reported adverse event. Three participants had grade 3 aminopherase elevation (defined as alanine aminopherase >5 upper limits of normal) after the second dose of inactivated whole-virion SARS-CoV-2 vaccination, and only 1 of them was judged as severe adverse event potentially related to SARS-CoV-2 vaccination. The positive rates of SARS-CoV-2 neutralizing antibodies were 76.8% in the noncirrhotic CLD group, 78.9% in the compensated cirrhotic group, 76.7% in the decompensated cirrhotic group (P = .894 among CLD subgroups), and 90.3% in healthy controls (P = .008 vs CLD group). CONCLUSION: Inactivated whole-virion SARS-CoV-2 vaccines are safe in patients with CLD. Patients with CLD had lower immunologic response to SARS-CoV-2 vaccines than healthy population. The immunogenicity is similarly low in noncirrhotic CLD, compensated cirrhosis, and decompensated cirrhosis.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunogenicidade da Vacina , Hepatopatias , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Método Duplo-Cego , Humanos , Cirrose Hepática/complicações , Hepatopatias/complicações , Estudos Prospectivos , SARS-CoV-2
16.
PLoS One ; 16(9): e0257426, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34559842

RESUMO

The ability to automatically detect and classify populations of cells in tissue sections is paramount in a wide variety of applications ranging from developmental biology to pathology. Although deep learning algorithms are widely applied to microscopy data, they typically focus on segmentation which requires extensive training and labor-intensive annotation. Here, we utilized object detection networks (neural networks) to detect and classify targets in complex microscopy images, while simplifying data annotation. To this end, we used a RetinaNet model to classify genetically labeled neurons and glia in the brains of Mosaic Analysis with Double Markers (MADM) mice. Our initial RetinaNet-based model achieved an average precision of 0.90 across six classes of cells differentiated by MADM reporter expression and their phenotype (neuron or glia). However, we found that a single RetinaNet model often failed when encountering dense and saturated glial clusters, which show high variability in their shape and fluorophore densities compared to neurons. To overcome this, we introduced a second RetinaNet model dedicated to the detection of glia clusters. Merging the predictions of the two computational models significantly improved the automated cell counting of glial clusters. The proposed cell detection workflow will be instrumental in quantitative analysis of the spatial organization of cellular populations, which is applicable not only to preparations in neuroscience studies, but also to any tissue preparation containing labeled populations of cells.


Assuntos
Neuroglia , Neurônios , Animais , Encéfalo , Diferenciação Celular , Camundongos
17.
Biomed Opt Express ; 12(8): 5214-5226, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34513252

RESUMO

Light-sheet fluorescence microscopy (LSFM) is a minimally invasive and high throughput imaging technique ideal for capturing large volumes of tissue with sub-cellular resolution. A fundamental requirement for LSFM is a seamless overlap of the light-sheet that excites a selective plane in the specimen, with the focal plane of the objective lens. However, spatial heterogeneity in the refractive index of the specimen often results in violation of this requirement when imaging deep in the tissue. To address this issue, autofocus methods are commonly used to refocus the focal plane of the objective-lens on the light-sheet. Yet, autofocus techniques are slow since they require capturing a stack of images and tend to fail in the presence of spherical aberrations that dominate volume imaging. To address these issues, we present a deep learning-based autofocus framework that can estimate the position of the objective-lens focal plane relative to the light-sheet, based on two defocused images. This approach outperforms or provides comparable results with the best traditional autofocus method on small and large image patches respectively. When the trained network is integrated with a custom-built LSFM, a certainty measure is used to further refine the network's prediction. The network performance is demonstrated in real-time on cleared genetically labeled mouse forebrain and pig cochleae samples. Our study provides a framework that could improve light-sheet microscopy and its application toward imaging large 3D specimens with high spatial resolution.

18.
Lancet Reg Health West Pac ; 9: 100110, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34379708

RESUMO

BACKGROUND: A universally applicable approach that provides standard HALE measurements for different regions has yet to be developed because of the difficulties of health information collection. In this study, we developed a natural language processing (NLP) based HALE estimation approach by using individual-level electronic medical records (EMRs), which made it possible to calculate HALE timely in different temporal or spatial granularities. METHODS: We performed diagnostic concept extraction and normalisation on 13•99 million EMRs with NLP to estimate the prevalence of 254 diseases in WHO Global Burden of Disease Study (GBD). Then, we calculated HALE in Chongqing, 2017, by using the life table technique and Sullivan's method, and analysed the contribution of diseases to the expected years "lost" due to disability (DLE). FINDINGS: Our method identified a life expectancy at birth (LE0) of 77•9 years and health-adjusted life expectancy at birth (HALE0) of 71•7 years for the general Chongqing population of 2017. In particular, the male LE0 and HALE0 were 76•3 years and 68•9 years, respectively, while the female LE0 and HALE0 were 80•0 years and 74•4 years, respectively. Cerebrovascular diseases, cancers, and injuries were the top three deterioration factors, which reduced HALE by 2•67, 2•15, and 1•19 years, respectively. INTERPRETATION: The results demonstrated the feasibility and effectiveness of EMRs-based HALE estimation. Moreover, the method allowed for a potentially transferable framework that facilitated a more convenient comparison of cross-sectional and longitudinal studies on HALE between regions. In summary, this study provided insightful solutions to the global ageing and health problems that the world is facing. FUNDING: National Key R and D Program of China (2018YFC2000400).

19.
Cells ; 9(12)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322301

RESUMO

Development of the nervous system undergoes important transitions, including one from neurogenesis to gliogenesis which occurs late during embryonic gestation. Here we report on clonal analysis of gliogenesis in mice using Mosaic Analysis with Double Markers (MADM) with quantitative and computational methods. Results reveal that developmental gliogenesis in the cerebral cortex occurs in a fraction of earlier neurogenic clones, accelerating around E16.5, and giving rise to both astrocytes and oligodendrocytes. Moreover, MADM-based genetic deletion of the epidermal growth factor receptor (Egfr) in gliogenic clones revealed that Egfr is cell autonomously required for gliogenesis in the mouse dorsolateral cortices. A broad range in the proliferation capacity, symmetry of clones, and competitive advantage of MADM cells was evident in clones that contained one cellular lineage with double dosage of Egfr relative to their environment, while their sibling Egfr-null cells failed to generate glia. Remarkably, the total numbers of glia in MADM clones balance out regardless of significant alterations in clonal symmetries. The variability in glial clones shows stochastic patterns that we define mathematically, which are different from the deterministic patterns in neuronal clones. This study sets a foundation for studying the biological significance of stochastic and deterministic clonal principles underlying tissue development, and identifying mechanisms that differentiate between neurogenesis and gliogenesis.


Assuntos
Córtex Cerebral/metabolismo , Receptores ErbB/metabolismo , Neurogênese , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Diferenciação Celular , Proliferação de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Receptores ErbB/genética , Camundongos , Camundongos Transgênicos , Neuroglia/citologia , Neuroglia/metabolismo , Processos Estocásticos
20.
PeerJ ; 8: e8997, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509445

RESUMO

The animal's blood is the most complicated and important biological liquid for veterinary medicine. In addition to standard methods that are always in use, recent technologies such as dynamic tensiometry (DT) of blood serum and PCR analysis of particular markers are in progress. The standard and modern biochemical tests are commonly used for general screening and, finally, complete diagnosis of animal health. Interpretation of major biochemical parameters is similar across animal species, but there are a few peculiarities in each case, especially well-known for cattle. The following directions are discussed here: hematological indicators; "total protein" and its fractions; some enzymes; major low-molecular metabolites (glucose, lipids, bilirubin, etc.); cations and anions. As example, the numerous correlations between DT data and biochemical parameters of cattle serum have been obtained and discussed. Changes in the cell-free nucleic acids (cfDNA) circulating in the blood have been studied and analyzed in a variety of conditions; for example, pregnancy, infectious and chronic diseases, and cancer. CfDNA can easily be detected using standard molecular biological techniques like DNA amplification and next-generation sequencing. The application of digital PCR even allows exact quantification of copy number variations which are for example important in prenatal diagnosis of chromosomal aberrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...