Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(8): 14521-14531, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859394

RESUMO

A topological photonic crystal InGaAsP/InP core-shell nanowire array laser with bulk states operating in the 1550 nm band is proposed and simulated. By optimizing the structure parameters, high Q factor of 1.2 × 105 and side-mode suppression ratio of 13.2 dB are obtained, which are 28.6 and 4.6 times that of a uniform nanowire array, respectively. The threshold and maximum output are 17% lower and 613% higher than that of the uniform nanowire array laser, respectively, due to the narrower nanowire slits and stronger optical confinement. In addition, a low beam divergence angle of 2° is obtained due to the topological protection. This work may pave the way for the development of high-output, low-threshold, low-beam-divergence nanolasers.

2.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894072

RESUMO

The large amount of sampled data in coherent phase-sensitive optical time-domain reflectometry (Φ-OTDR) brings heavy data transmission, processing, and storage burdens. By using the comparator combined with undersampling, we achieve simultaneous reduction of sampling rate and sampling resolution in hardware, thus greatly decreasing the sampled data volume. But this way will inevitably cause the deterioration of detection signal-to-noise ratio (SNR) due to the quantization noise's dramatic increase. To address this problem, denoising the demodulated phase signals using compressed sensing, which exploits the sparsity of spectrally sparse vibration, is proposed, thereby effectively enhancing the detection SNR. In experiments, the comparator with a sampling parameter of 62.5 MS/s and 1 bit successfully captures the 80 MHz beat signal, where the sampled data volume per second is only 7.45 MB. Then, when the piezoelectric transducer's driving voltage is 1 Vpp, 300 mVpp, and 100 mVpp respectively, the SNRs of the reconstructed 200 Hz sinusoidal signals are respectively enhanced by 23.7 dB, 26.1 dB, and 28.7 dB by using compressed sensing. Moreover, multi-frequency vibrations can also be accurately reconstructed with a high SNR. Therefore, the proposed technique can effectively enhance the system's performance while greatly reducing its hardware burden.

3.
ACS Nano ; 18(23): 14978-14988, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38805401

RESUMO

3D assembly technology is a cutting-edge methodology for constructing high-performance and multifunctional photodetectors since some attractive photodetection features such as light trapping effect, omnidirectional ability, and high spatial resolution can be introduced. However, there has not been any report of 3D-assembled multimode photodetectors owing to the lack of design and fabrication guideline of electrodes serving for 3D heterostructures. In this study, a 3D-assembled dual-mode photodetector (3DdmPD) was realized successfully via the clever electrical contact between the rolled-up tubular graphene/GaAs/InGaAs heterostructure and planar metal electrode. Arbitrary switching of three coplanar electrodes makes the as-fabricated tubular 3D photodetector work at the unbiased photodiode mode, which is suitable for energy conservation high-speed photodetection, or the biased photoconductive mode, which favors extremely weak light photodetection, fully showing the advantages of multifunctional detection. In more detail, the Ilight/Idark ratio reached as high as 2 × 104, and a responsivity of 42.3 mA/W, a detectivity of 1.5 × 1010 Jones, as well as a rising/falling time (τr/τf) of 360/370 µs were achieved under the self-driven photodiode mode. Excitingly, 3DdmPD shows omnidirectional photodetection ability at the same time. When 3DdmPD works at the photoconductive mode with 5 V bias, its responsivity is extremely high as 7.9 × 104 A/W and corresponding detectivity is increased to 1.0 × 1011 Jones. Benefiting from the totally independent coplanar electrodes, 3DdmPD is much more easily integrated as arrays that are expected to offer the function of high-speed omnidirectional image-sensing with ultralow power consumption than the planar counterparts which share communal bottom electrodes. We believe that our work can contribute to the progress of 3D-assembled optoelectronic devices.

4.
Opt Express ; 32(1): 652-661, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175089

RESUMO

A Si-based nanowire array photonic-crystal surface-emitting laser based on a flat band is designed and simulated. By introducing an air gap between the nanowire and substrate, the bottom reflectivity is significantly enhanced, resulting in much lower threshold and smaller cutoff diameter. Through adjusting the lattice constant (the distance between neighboring nanowires) and nanowire diameter, a photonic crystal structure with a flat band is achieved, in which strong interaction between light and matter occurs in the flat band mode. For the device with a small size, single-mode lasing is obtained with a side-mode suppression ratio of 21 dB, high quality factor of 3940, low threshold gain of 624 cm-1, and small beam divergency angle of ∼7.5°. This work may pave the way for the development of high-performance Si-based surface-emitting nanolasers and high-density photonic integrated circuits.

5.
Sensors (Basel) ; 24(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203135

RESUMO

Fiber-based flexible sensors have promising application potential in human motion and healthcare monitoring, owing to their merits of being lightweight, flexible, and easy to process. Now, high-performance elastic fiber-based strain sensors with high sensitivity, a large working range, and excellent durability are in great demand. Herein, we have easily and quickly prepared a highly sensitive and durable fiber-based strain sensor by dip coating a highly stretchable polyurethane (PU) elastic fiber in an MXene/waterborne polyurethane (WPU) dispersion solution. Benefiting from the electrostatic repulsion force between the negatively charged WPU and MXene sheets in the mixed solution, very homogeneous and stable MXene/WPU dispersion was successfully obtained, and the interconnected conducting networks were correspondingly formed in a coated MXene/WPU shell layer, which makes the as-prepared strain sensor exhibit a gauge factor of over 960, a large sensing range of over 90%, and a detection limit as low as 0.5% strain. As elastic fiber and mixed solution have the same polymer constitute, and tight bonding of the MXene/WPU conductive composite on PU fibers was achieved, enabling the as-prepared strain sensor to endure over 2500 stretching-releasing cycles and thus show good durability. Full-scale human motion detection was also performed by the strain sensor, and a body posture monitoring, analysis, and correction prototype system were developed via embedding the fiber-based strain sensors into sweaters, strongly indicating great application prospects in exercise, sports, and healthcare.


Assuntos
Asco , Nitritos , Elementos de Transição , Dispositivos Eletrônicos Vestíveis , Humanos , Poliuretanos , Atenção à Saúde
6.
Sensors (Basel) ; 23(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896707

RESUMO

In the domain of optical fiber distributed acoustic sensing, the persistent challenge of extending sensing distances while concurrently improving spatial resolution and frequency response range has been a complex endeavor. The amalgamation of pulse compression and frequency division multiplexing methodologies has provided certain advantages. Nevertheless, this approach is accompanied by the drawback of significant bandwidth utilization and amplified hardware investments. This study introduces an innovative distributed optical fiber acoustic sensing system aimed at optimizing the efficient utilization of spectral resources by combining compressed pulses and frequency division multiplexing. The system continuously injects non-linear frequency modulation detection pulses spanning various frequency ranges. The incorporation of non-uniform frequency division multiplexing augments the vibration frequency response spectrum. Additionally, nonlinear frequency modulation adeptly reduces crosstalk and enhances sidelobe suppression, all while maintaining a favorable signal-to-noise ratio. Consequently, this methodology substantially advances the spatial resolution of the sensing system. Experimental validation encompassed the multiplexing of eight frequencies within a 120 MHz bandwidth. The results illustrate a spatial resolution of approximately 5 m and an expanded frequency response range extending from 1 to 20 kHz across a 16.3 km optical fiber. This achievement not only enhances spectral resource utilization but also reduces hardware costs, making the system even more suitable for practical engineering applications.

7.
Opt Lett ; 47(20): 5401-5404, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240374

RESUMO

Topology optimization has been widely adopted in the inverse design of nanophotonic devices due to low computation cost, which unfortunately produces intermediate relative permittivity values that fail to meet fabrication constraints. Additionally, the postprocessing required inevitably increases the complexity of the inverse design. In this Letter, we propose an adaptive projection method for topology optimization, in which a two-level hierarchical hyperbolic tangent projection function with linear increment and differentiation is constructed and applied to eliminate inherent defects of conventional topology optimization. Two binarized nanophotonic devices have been designed by our adaptive projection method, among which one ultra-compact dual 90°-bend waveguide reduces the average insertion loss to 20.3% of its similar counterpart and shows an 8.1% reduction for the average crosstalk in the O band, the other ultralow-loss waveguide crossing features an average insertion loss as low as 0.09 dB. With the significant advantages of excellent performance guarantee and fabrication-friendly geometry control fully demonstrated, our inverse design solution shows potential to contribute to nanophotonic devices and integrated chips.

8.
Nanomaterials (Basel) ; 11(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835571

RESUMO

A laterally oriented GaAs p-i-n nanowire solar cell with Ag gratings is proposed and studied via coupled three-dimensional optoelectronic simulations. The results show that the gratings significantly enhance the absorption of nanowire for both TM and TE polarized light due to the combined effect of grating diffraction, excitation of plasmon polaritons, and suppression of carrier recombination. At an optimal grating period, the absorption at 650-800 nm, which is an absorption trough for pure nanowire, is substantially enhanced, raising the conversion efficiency from 8.7% to 14.7%. Moreover, the gratings enhance the weak absorption at long wavelengths and extend the absorption cutoff wavelength for ultrathin nanowires, yielding a remarkable efficiency of 13.3% for the NW with a small diameter of 90 nm, 2.6 times that without gratings. This work may pave the way toward the development of ultrathin high-efficiency nanoscale solar cells.

9.
BMC Oral Health ; 21(1): 423, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461866

RESUMO

BACKGROUND: The objective of this report was to highlight the importance of using a dental operating microscope (DOM) to locate supernumerary canals and diagnose variations in root canals using cone-beam computed tomographic (CBCT) images. CASE PRESENTATION: A 35-year-old Chinese female had repeated swelling in the upper right posterior maxilla for 3 months and was referred to evaluate symptomatic apical periodontitis and mesotaurodonts for upper right first permanent molar and upper right second permanent molar. Root canal therapy was proposed and conducted with the use of DOM and CBCT. CONCLUSIONS: Proper diagnosis and careful clinicoradiological examination are necessary, and it is essential to reinforce the knowledge of the rare morphology of root canals for clinicians.


Assuntos
Cavidade Pulpar , Raiz Dentária , Adulto , Tomografia Computadorizada de Feixe Cônico , Cavidade Pulpar/diagnóstico por imagem , Feminino , Humanos , Maxila/diagnóstico por imagem , Dente Molar/diagnóstico por imagem
10.
Micromachines (Basel) ; 12(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072164

RESUMO

In this paper, a switchable and dual-tunable terahertz absorber based on patterned graphene and vanadium dioxide is proposed and analyzed. By controlling the Fermi level of graphene and the temperature of vanadium dioxide, the device's function can be switched and its absorbing properties can be tuned. When the vanadium dioxide is in an insulator state, the device can be switched from near-total reflection (>97%) to ultra-broadband absorption (4.5-10.61 THz) as the Fermi level of graphene changes from 0 to 0.8 eV. When the vanadium dioxide is changed to a metal state, the device can act as a single-band absorber (when the Fermi level of graphene is 0 eV) and a dual-band absorber with peaks of 4.16 THz and 7.3 THz (when the Fermi level of graphene is 0.8 eV). Additionally, the absorber is polarization-insensitive and can maintain a stable high-absorption performance within a 55° incidence angle. The multilayered structure shows great potential for switchable and tunable high-performance terahertz devices.

11.
Phys Eng Sci Med ; 44(2): 535-543, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33929712

RESUMO

The use of photoplethysmography (PPG) on the wrist to measure physiological indicators has attracted wide attention because of the portability and real-time characteristic of this technology. However, accurate estimation of the heart rate (HR) is difficult to realize using PPG because of the interference of motion artifacts. To address this problem, a method combining multichannel PPG signals is proposed. By using a peak selection method that combines several factors based on scores, the appropriate frequency is selected from the spectrum of the PPG signals. The chosen frequency is then considered as the HR. The approach exhibits high accuracy and speed. Experimental results for 12 training sets showed that with the proposed method, an average absolute error of 1.16 beats per minute (BPM) (standard deviation: 1.56 BPM) was obtained. Therefore, the proposed approach is reliable for HR monitoring from PPG during high-intensity physical activities. It can be applied to smart wearable devices for fitness tracking and health information tracking.


Assuntos
Fotopletismografia , Processamento de Sinais Assistido por Computador , Artefatos , Exercício Físico , Frequência Cardíaca
12.
Opt Express ; 29(3): 3694-3707, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770964

RESUMO

We present an ultrasensitive enhanced fabrication-tolerance refractometer utilizing the polarimetric interference of a tapered PANDA-air-hole fiber (PAHF). To obtain high birefringence and unique group birefringence, the PAHF is specially designed by introducing double air holes into the cladding. Ultrahigh sensitivity can be achieved by reducing the group birefringence difference to zero, defined as birefringent dispersion turning point (BDTP). By modifying the diameter of PAHF, the birefringent dispersion can be effectively manipulated to reduce the group birefringence difference. In this way, the workable diameter range for realizing the ultrahigh sensitivity is twice as large as that of conventional microfibers. Additionally, the ultrasensitive wavelength band is dramatically expanded by at least 600 nm, enabling a compact structure and a flexible fiber-length design. Due to the tunable dispersion optimization, the distinctive properties of ultrahigh sensitivity, enhanced fabrication tolerance, and broadband operation can be achieved. We experimentally verified the ultrahigh refractive index sensitivity of 47223 nm/RIU around the BDTP, and the experimental results matched well with the simulations.

13.
Micromachines (Basel) ; 11(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322381

RESUMO

A dual-controlled tunable broadband terahertz absorber based on a hybrid graphene-Dirac semimetal structure is designed and studied. Owing to the flexible tunability of the surface conductivity of graphene and relative permittivity of Dirac semimetal, the absorption bandwidth can be tuned independently or jointly by shifting the Fermi energy through chemical doping or applying gate voltage. Under normal incidence, the device exhibits a high absorption larger than 90% over a broad range of 4.06-10.7 THz for both TE and TM polarizations. Moreover, the absorber is insensitive to incident angles, yielding a high absorption over 90% at a large incident angle of 60° and 70° for TE and TM modes, respectively. The structure shows great potential in miniaturized ultra-broadband terahertz absorbers and related applications.

14.
Nanomaterials (Basel) ; 10(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255968

RESUMO

A low-threshold miniaturized single-mode nanowire laser operating at telecommunication wavelengths was proposed and simulated. The device was constructed by combining a single InGaAs nanowire with a photonic crystal microcavity and asymmetric distributed-Bragg-reflector mirrors. The mode characteristics and threshold properties were calculated using the three-dimensional finite-different time-domain method. Due to the effective subwavelength confinement and strong optical feedback, provided by the photonic crystal microcavity, and distributed-Bragg-reflector mirrors, respectively, the confinement factor, end-facet reflectivity, and quality factor significantly improved. A lowest threshold of ~80 cm-1 and ultra-small cut-off radius of ~40 nm are obtained, reduced by 67%, and 70%, respectively, compared with a traditional nanowire laser. In addition, due to the photonic band gap effect, single-mode lasing is achieved with a high side-mode suppression ratio of >12 dB. By placing several identical nanowires in the photonic crystal with different lattice constants, an on-chip laser array is realized, which is promising in wavelength division multiplexing applications. This work may pave the way for the development of low-threshold miniaturized nanolasers and low-consumption high-density photonic integrated circuits.

15.
Nanomaterials (Basel) ; 10(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512715

RESUMO

A horizontally aligned GaAs p-i-n nanowire array solar cell is proposed and studied via coupled three-dimensional optoelectronic simulations. Benefiting from light-concentrating and light-trapping properties, the horizontal nanowire array yields a remarkable efficiency of 10.8% with a radius of 90 nm and a period of 5 radius, more than twice that of its thin-film counterpart with the same thickness. To further enhance the absorption, the nanowire array is placed on a low-refractive-index MgF2 substrate and capsulated in SiO2, which enables multiple reflection and reabsorption of light due to the refractive index difference between air/SiO2 and SiO2/MgF2. The absorption-enhancement structure increases the absorption over a broad wavelength range, resulting in a maximum conversion efficiency of 18%, 3.7 times higher than that of the thin-film counterpart, which is 3 times larger in GaAs material volume. This work may pave the way for the development of ultra-thin high-efficiency solar cells with very low material cost.

16.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 37(2): 155-161, 2019 Apr 01.
Artigo em Chinês | MEDLINE | ID: mdl-31168981

RESUMO

OBJECTIVE: To assess the feasibility and efficacy of simvastatin-collagen composite sponge as a novel, direct pulp capping material. METHODS: A total of 120 Sprague-Dawley rats were randomly divided into three groups: the simvastatin-collagen composite sponge group (SIM group), the collagen sponge group (CS group), and the Ca(OH)2 group (CH group). An endodontic entry cavity was prepared on the occlusion of the first molar on the left maxillary of each rat. The contralateral teeth were utilized as the normal control group. The rats were experimented after 1, 3, 7, 14, and 28 days. X-ray observations were conducted and the specimens underwent hematoxylin-eosin (HE) and Masson's Thichrome staining. Dentin bridge formations and pulpal biology reactions were evaluated histopathologically. RESULTS: X-ray results: high-density images could be observed on the pulp exposure sites in the CH group on the 28th day. In the SIM group, high-density images could be observed after 14 and 28 days, whereas in the CS group, high-density images were not observable in the exposed area. HE and Masson's Thichrome staining results: different degrees of inflammation under the cavity were detected in the three groups at different time points. The inflammatory reaction of the CS group was the most serious. The degree of the inflammatory reaction varied significantly between the SIM and the CS groups on the 14th and 28th days (P<0.01). The inflammatory reaction in the SIM group was lighter than in the CH group. There was a statistical difference between the SIM and the CH groups on the 14th day (P<0.05). During the observation period, the SIM group induced the best and fastest formation of reparative dentin. As for dentin bridge formation, a significantly higher complete bridge rate was observed in the SIM group than in the CH and in the CS groups on the 14th day (P<0.05) and for the SIM and the CH groups compared with the CS group on the 28th day (P<0.05). CONCLUSIONS: The simvastatin-collagen composite sponge exhibited satisfactory biocompatibility with the pulp tissue and promoted the formation of reparative dentin. The application of simvastatin-collagen composite sponge as a pulp-capping material has satisfactory potential.


Assuntos
Capeamento da Polpa Dentária , Dentina Secundária , Animais , Hidróxido de Cálcio , Colágeno , Polpa Dentária , Exposição da Polpa Dentária , Dente Molar , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Sinvastatina
17.
Opt Express ; 18(17): 18431-7, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20721238

RESUMO

This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems.


Assuntos
Simulação por Computador , Tecnologia de Fibra Óptica/métodos , Modelos Teóricos , Telecomunicações , Fótons
18.
Dev Comp Immunol ; 32(6): 673-81, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18068225

RESUMO

In this report, recombinant interleukin-8 (rIL-8) was produced and its activity tested for the first time in fish. The rainbow trout rIL-8 was produced in Escherichia coli and purified using a 6xHis tag at the N-terminus. The rIL-8 induced a dose-dependent migration of head kidney leukocytes at concentrations from 0.1 to 10 ng/ml, with a peak response at 1 ng/ml. Trout rIL-8 also had a significant effect on superoxide production by head kidney cells, with maximal activity at 0.1 and 1 ng/ml. When injected intraperitoneally into trout, rIL-8 had a clear effect on total leukocyte number in the peritoneal cavity, with increasing doses (up to 5 microg) eliciting more cells. Of three leukocyte types distinguished, neutrophils were the dominant cell type, especially at higher rIL-8 concentrations. In contrast, the proportion of macrophages and lymphocytes decreased with rIL-8 administration, suggesting that they were not attracted at the same rate as neutrophils.


Assuntos
Interleucina-8/genética , Interleucina-8/isolamento & purificação , Oncorhynchus mykiss/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Animais , Contagem de Células , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Relação Dose-Resposta a Droga , Escherichia coli , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Leucócitos/citologia , Leucócitos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Oncorhynchus mykiss/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Explosão Respiratória/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...