Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Nutr ; 18: 17-26, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39022774

RESUMO

The transition period for dairy cows usually refers to the 3 weeks pre-calving to the 3 weeks post-calving. During this period, dairy cows undergo metabolic and physiological adaptations because of their susceptibility to metabolic and infectious diseases. Poor feeding management under these circumstances may adversely affect the health and subsequent production performance of the cows. Owing to long-term adaptation and evolution, the rumen has become a unique ecosystem inhabited by a complex microbial community closely associated with its natural host. Dietary components are metabolized by the rumen microbiota, and volatile fatty acids and microbial protein products can be used as precursor substances for synthesizing meat and milk components. The successful transition of perinatal dairy cows includes changes in diet, physiology, and the rumen microbiota. Rumen microbial profiles have been confirmed to be heritable and repairable; however, adverse circumstances affect rumen microbial composition, host digestion and metabolism, as well as postpartum production traits of dairy cows for a certain period. Preliminary evidence indicates a close relationship between the rumen microbiota and animal performance. Therefore, changes in rumen microbes during the transition period and the intrinsic links between the microbiota and host postpartum phenotypic traits need to be better understood to optimize production performance in ruminants.

2.
Gene ; 927: 148633, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838871

RESUMO

Depression, which is a disease of heterogeneous etiology, is characterized by high disability and mortality rates. Gut microbiota are associated with the development of depression. To further explore any differences in the mechanisms of depression induced by gut microbiota and traditional stresses, as well as facilitate the development of microbiota-based interventions, a fecal microbiota transplantation (FMT) depression model was made. This was achieved by transplanting feces from major depressive disorder (MDD) patients into germ-free mice. Second, the mechanisms of the depression induced by gut microbiota were analyzed in comparison with those of the depression caused by different forms of stress. It turned out that mice exhibited depressive-like behavior after FMT. Then, PCR array analysis was performed on the hippocampus of the depressed mice to identify differentially expressed genes (DEGs). The KEGG analysis revealed that the pathways of depression induced by gut microbes are closely associated with immuno-inflammation. To determine the pathogenic pathways of physiological stress and psychological stress-induced depression, raw data was extracted from several databases and KEGG analysis was performed. The results from the analysis revealed that the mechanisms of depression induced by physiological and psychological stress are closely related to the regulation of neurotransmitters and energy metabolism. Interestingly, the immunoinflammatory response was distinct across different etiologies that induced depression. The findings showed that gut microbiota dysbiosis-induced depression was mainly associated with adaptive immunity, while physiological stress-induced depression was more linked to innate immunity. This study compared the pathogenesis of depression caused by gut microbiota dysbiosis, and physiological and psychological stress. We explored new intervention methods for depression and laid the foundation for precise treatment.

3.
J Dairy Sci ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580152

RESUMO

Short-chain fatty acids (SCFAs) content in milk may have been underestimated due to the neglect of the esterified SCFAs content and the lack of an accurate detection method, especially for C1:0, C2:0, and C3:0 SCFAs. In this study, an accurate gas chromatography-mass spectrometry profiling method was established for 10 SCFAs. A 2-step esterification, including alkaline saponification (60°C for 30 min) and acid-catalyzed esterification (80°C for 150 min) in water/isopropyl/hexane (1:2:1, volume ratio), was found to be the most suitable for the quantification of esterified and nonesterified SCFAs analysis. The validation results demonstrate satisfactory linearity, sensitivity, matrix effects, precision, and accuracy. The recoveries of nonesterified and esterified SCFAs ranged from 82.78% to 112.49%, respectively. Human milk is distinguished from cow milk by its higher C1:0 and C2:0 content and lower C4:0 and C6:0 content. This method successfully accomplished qualitative and quantitative estimation of all 10 SCFAs in milk, including both nonesterified and esterified SCFAs. Furthermore, whether our method is applicable for the determination of SCFAs in serum, rumen fluid, and feces remains to be explored.

4.
Physiol Behav ; 279: 114530, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552706

RESUMO

Depression is a serious mental illness. Previous studies found that early life stress (ELS) plays a vital role in the onset and progression of depression. However, relevant studies have not yet been able to explain the specific effects of early stress on stress-induced depression sensitivity and individual behavior during growth. Therefore, we constructed a maternal separation (MS) model and administered chronic social frustration stress at different stages of their growth while conducting metabolomics analysis on the hippocampus of mice. Our results showed that the immobility time of mice in the forced swimming test was significantly reduced at the end of MS. Meanwhile, mice with MS experience significantly decreased total movement distance in the open field test and sucrose preference ratio in the sucrose preference test when subjected to chronic social defeat stress (CSDS) during adolescence. In adulthood, the results were the opposite. In addition, we found that level changes in metabolites such as Beta-alanine, l-aspartic acid, 2-aminoadipic acid, and Glycine are closely related to behavioral changes. These metabolites are mainly enriched in Pantothenate, CoA biosynthesis, and Beta Alanine metabolism pathways. Our experiment revealed that the effects of ELS vary across different age groups. It will increase an individual's sensitivity to depression when facing CSDS in adolescence, but it will reduce their sensitivity to depression when facing CSDS in adulthood. This may be achieved by regulating the hippocampus's Pantothenate and CoA biosynthesis and Beta Alanine metabolism pathways represented by Beta-alanine, l-Aspartic acid, 2-aminoadipic acid, and Glycine metabolites.


Assuntos
Depressão , Privação Materna , Camundongos , Animais , Depressão/etiologia , Depressão/metabolismo , Ácido 2-Aminoadípico/metabolismo , Ácido 2-Aminoadípico/farmacologia , Hipocampo/metabolismo , Glicina/farmacologia , Sacarose/farmacologia , beta-Alanina/metabolismo , beta-Alanina/farmacologia , Estresse Psicológico/metabolismo , Comportamento Animal/fisiologia , Modelos Animais de Doenças
5.
Curr Res Food Sci ; 8: 100673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38269357

RESUMO

Milk authentication requires identification of the origin and assessment of the aroma characteristics. In this study, we analyzed 24 raw milk samples from different regions of China by profiling volatile flavors using headspace solid phase microextraction-gas chromatography-mass spectrometry, headspace gas chromatography-ion mobility spectrometry, and intelligent sensory technology (E-tongue and E-nose). The flavor of raw milk in Southern and Northern China had evident differences based on the intelligent sensory technology. However, the differences among the samples from the northeast, northwest, and central regions were not significant. Correlations between milk origin and volatile compounds based on variable importance prediction > 1 and principal component analysis results revealed differential compounds including pyridine, nonanal, dodecane, furfural, 1-decene, octanoic acid, and 1,3,5,7-cyclooctatetraene. Our study findings provided a deeper understanding of the geographical differences in raw milk volatile compounds in China.

6.
Zool Res ; 45(1): 95-107, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114436

RESUMO

The gut microbiome interacts with the host to maintain body homeostasis, with gut microbial dysbiosis implicated in many diseases. However, the underlying mechanisms of gut microbe regulation of host behavior and brain functions remain unclear. This study aimed to elucidate the influence of gut microbiota on brain functions via post-translational modification mechanisms in the presence or absence of bacteria without any stimulation. We conducted succinylome analysis of hippocampal proteins in germ-free (GF) and specific pathogen-free (SPF) mice and metagenomic analysis of feces from SPF mice. These results were integrated with previously reported hippocampal acetylome and phosphorylome data from the same batch of mice. Subsequent bioinformatics analyses revealed 584 succinylation sites on 455 proteins, including 54 up-regulated succinylation sites on 91 proteins and 99 down-regulated sites on 51 proteins in the GF mice compared to the SPF mice. We constructed a panoramic map of gut microbiota-regulated succinylation, acetylation, and phosphorylation, and identified cross-talk and relative independence between the different types of post-translational modifications in modulating complicated intracellular pathways. Pearson correlation analysis indicated that 13 taxa, predominantly belonging to the Bacteroidetes phylum, were correlated with the biological functions of post-translational modifications. Positive correlations between these taxa and succinylation and negative correlations between these taxa and acetylation were identified in the modulation of intracellular pathways. This study highlights the hippocampal physiological changes induced by the absence of gut microbiota, and proteomic quantification of succinylation, phosphorylation, and acetylation, contributing to our understanding of the role of the gut microbiome in brain function and behavioral phenotypes.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Lisina/metabolismo , Interações entre Hospedeiro e Microrganismos , Proteômica/métodos , Processamento de Proteína Pós-Traducional
7.
Expert Rev Proteomics ; 20(12): 397-418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37934939

RESUMO

INTRODUCTION: An increasing number of studies indicate that the microbiota-gut-brain axis is an important pathway involved in the onset and progression of depression. The responses of the organism (or its microorganisms) to external cues cannot be separated from a key intermediate element: their metabolites. AREAS COVERED: In recent years, with the rapid development of metabolomics, an increasing amount of metabolites has been detected and studied, especially the gut metabolites. Nevertheless, the increasing amount of metabolites described has not been reflected in a better understanding of their functions and metabolic pathways. Moreover, our knowledge of the biological interactions among metabolites is also incomplete, which limits further studies on the connections between the microbial-entero-brain axis and depression. EXPERT OPINION: This paper summarizes the current knowledge on depression-related metabolites and their involvement in the onset and progression of this disease. More importantly, this paper summarized metabolites from the intestine, and defined them as enterogenic metabolites, to further clarify the function of intestinal metabolites and their biochemical cross-talk, providing theoretical support and new research directions for the prevention and treatment of depression.


Assuntos
Microbioma Gastrointestinal , Humanos , Depressão , Metabolômica , Metaboloma , Encéfalo
8.
Front Microbiol ; 14: 1247348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886063

RESUMO

Introduction: Milk fat is the most variable nutrient in milk, and recent studies have shown that rumen bacteria are closely related to milk fat. However, there is limited research on the relationship between rumen bacteria and milk fatty. Fatty acids (FAs) are an important component of milk fat and are associated with various potential benefits and risks to human health. Methods: In this experiment, forty-five healthy Holstein dairy cows with alike physiological and productive conditions were selected from medium-sized dairy farms and raised under the same feeding and management conditions. The experimental period was two weeks. During the experiment, raw milk and rumen fluid were collected, and milk components were determined. In this study, 8 high milk fat percentage (HF) dairy cows and 8 low milk fat percentage (LF) dairy cows were selected for analysis. Results: Results showed that the milk fat percentage in HF group was significantly greater than that of the dairy cows in the LF group. 16S rRNA gene sequencing showed that the rumen bacterial abundance of HF dairy cows was significantly higher than that in LF dairy cows; at the genus level, the bacterial abundances of Prevotellaceae_UCG-001, Candidatus_Saccharimonas, Prevotellaceae_UCG-003, Ruminococcus_1, Lachnospiraceae_XPB1014_group, Lachnospiraceae_AC2044_group, probable_genus_10 and U29-B03 in HF group were significantly higher than those in the LF group. Spearman rank correlation analysis indicated that milk fat percentage was positively related to Prevotellaceae_UCG-001, Candidatus_Saccharimonas, Prevotellaceae_UCG-003, Ruminococcus_1, Lachnospiraceae_XPB1014_group, Lachnospiraceae_AC2044_group, probable_genus_10 and U29-B03. Furthermore, Prevotellaceae_UCG-001 was positively related to C14:0 iso, C15:0 iso, C18:0, Ruminococcus_1 with C18:1 t9, Lachnospiraceae_AC2044_group with C18:1 t9 and C18:1 t11, U29-B03 with C15:0 iso. Discussion: To sum up, rumen bacteria in dairy cows are related to the variation of milk fat, and some rumen bacteria have potential effects on the deposition of certain fatty acids in raw milk.

9.
Foods ; 12(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37893646

RESUMO

The milk fat globule membrane (MFGM) is a complex tri-layer membrane that wraps droplets of lipids in milk. In recent years, it has attracted widespread attention due to its excellent bioactive functions and nutritional value. MFGM contains a diverse array of bioactive lipids, including cholesterol, phospholipids, and sphingolipids, which play pivotal roles in mediating the bioactivity of the MFGM. We sequentially summarize the main lipid types in the MFGM in this comprehensive review and outline the characterization methods used to employ them. In this comprehensive review, we sequentially describe the types of major lipids found in the MFGM and outline the characterization methods employed to study them. Additionally, we compare the structural disparities among glycerophospholipids, sphingolipids, and gangliosides, while introducing the formation of lipid rafts facilitated by cholesterol. The focus of this review revolves around an extensive evaluation of the current research on lipid isolates from the MFGM, as well as products containing MFGM lipids, with respect to their impact on human health. Notably, we emphasize the clinical trials encompassing a large number of participants. The summarized bioactive functions of MFGM lipids encompass the regulation of human growth and development, influence on intestinal health, inhibition of cholesterol absorption, enhancement of exercise capacity, and anticancer effects. By offering a comprehensive overview, the aim of this review is to provide valuable insights into the diverse biologically active functions exhibited by lipids in the MFGM.

10.
Int J Mol Sci ; 24(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37762223

RESUMO

Strontium (Sr) is an essential trace element in the human body and plays an important role in regulating male reproductive health. Recent studies have shown that gut flora plays a key role in maintaining spermatogenesis, as well as testicular health, through the gut-testis axis. At present, it is unclear whether gut microbiota can mediate the effects of Sr on sperm quality, and what the underlying mechanisms may be. We investigated the effects of different concentrations of strontium chloride (SrCl2) solutions (0, 50, 100, and 200 mg/kg BW) on reproductive function and gut microbiota in male Wistar rats (6-8 weeks, 250 ± 20 g). All the animals were euthanized after 37 days of treatment. The Sr-50 group significantly increased sperm concentration, sperm motility, and sperm viability in rats. After Sr treatment, serum and testicular testosterone (T) and Sr levels increased in a dose-dependent manner with increasing Sr concentration. At the same time, we also found that testicular marker enzymes (ACP, LDH) and testosterone marker genes (StAR, 3ß-HSD, and Cyp11a1) increased significantly in varying degrees after Sr treatment, while serum NO levels decreased significantly in a dose-dependent manner. Further investigation of intestinal flora showed that SrCl2 affected the composition of gut microbiome, but did not affect the richness and diversity of gut microbiota. Sr treatment reduced the number of bacteria with negative effects on reproductive health, such as Bacteroidetes, Tenericutes, Romboutsia, Ruminococcaceae_UCG_014, Weissella, and Eubacterium_coprostanoligenes_group, and added bacteria with negative effects on reproductive health, such as Jeotgalicoccus. To further explore the Sr and the relationship between the gut microbiota, we conducted a Spearman correlation analysis, and the results showed that the gut microbiota was closely correlated with Sr content in serum and testicular tissue, sex hormone levels, and testicular marker enzymes. Additionally, gut microbiota can also regulate each other and jointly maintain the homeostasis of the body's internal environment. However, we found no significant correlation between intestinal flora and sperm quality in this study, which may be related to the small sample size of our 16S rDNA sequencing. In conclusion, the Sr-50 group significantly increased T levels and sperm quality, and improved the levels of testicular marker enzymes and testosterone marker genes in the rats. Sr treatment altered the gut flora of the rats. However, further analysis of the effects of gut microbiota in mediating the effects of SrCl2 on male reproductive function is needed. This study may improve the current understanding of the interaction between Sr, reproductive health, and gut microbiota, providing evidence for the development of Sr-rich foods and the prevention of male fertility decline.

11.
Front Nutr ; 10: 1204005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305087

RESUMO

The importance of food components to potential benefits and risks to human health is gradually being consumer awareness. Milk is an important part of the lipid content of the human diet, and there are few detailed reports on the fatty acid (FA) profiles of retail milk. In the study, we developed a gas chromatography-mass spectrometry (GC-MS) method to simultaneously determine 82 FAs, including 11 even-chain saturated FAs, 10 odd-chain saturated FAs, 9 branched-chain saturated FAs, 30 monounsaturated FAs, and 22 polyunsaturated FAs; this was applied to analyze samples (186 samples) of commercially available milk from 22 provinces throughout China and to evaluate the nutritional value of these samples based on FA-related indices. The results showed that the overall composition of milk FAs among the different regions was numerically similar, and minor FAs showed few differences. When considering the retail milk FA composition and dairy fat intake in China, regional variations have a limited impact on FA consumption. Moreover, milk accounts for approximately one-third and <10% of the maximum recommended intake of saturated FAs and trans-FAs in consumer diets, respectively. This study provides an updated report on the composition of FAs and the nutritional value of retail milk across China, which can serve as a reference for producers for future research on regulating milk FAs, for consumers to select milk, and for nutrition departments to formulate relevant nutritional guidance recommendations.

12.
Foods ; 12(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37174406

RESUMO

The flavor of fresh, raw milk is considered to be the key to maintaining the quality of dairy products, and is very crucial in affecting a consumer's choice. To better understand the differences in flavor of fresh milk between feeding patterns, we conducted the following study. Twelve Holstein cows reared in pure grazing mode and twelve reared intensively in medium to large farms were selected from the Xinjiang Uygur Autonomous Regions at the same time, and the flavor of their raw milk was analyzed. Aroma profiles and taste attributes were assessed by electronic nose and electronic tongue, respectively, and volatile flavor compounds were characterized and quantified by Headspace-Solid Phase Microextraction/Gas Chromatography-Mass Spectrometry. Thirteen volatile compounds were identified in the indoor feeding pattern and 12 in the grazing; most of them overlapped. W1S, W2S and W5S were the main contributing sensors of the electronic nose for the overall assessment of the aroma profile. Raw milk from grazing had more intense astringency, bitterness, sourness and richness in taste compared to indoor feeding. Different dietary conditions may contribute to a variety of aroma profiles. Oxime-, methoxy-phenyl-, octadecanoic acid, furfural and dodecanoic acid were the key volatile flavor compounds of grazing. Meanwhile, raw milk from indoor feeding patterns was unique in 2-nonanone, heptanoic acid and n-decanoic acid. All three detection techniques were valid and feasible for differentiating raw milk in both feeding patterns, and the compounds were significantly correlated with the key sensors by correlation analysis. This study is promising for the future use of metabolic sources of volatile organic compounds to track and monitor animal feeding systems.

13.
Foods ; 12(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048189

RESUMO

Free short-chain fatty acids (FSCFAs) are a momentous contributor to the flavor of the raw cow milk. Hence, the purpose of this research was to build an approach for the quantification of 10 FSCFAs in raw cow milk. Raw cow milk samples are acidified by hydrochloric acid ethanol (0.5%) solution pretreatment and then processed on the gas chromatography-mass spectrometry. With the exception of iso C5:0 and anteiso C5:0 co-flux, the remaining eight FSCFAs were effectively separated by chromatography. The methodological validation data revealed that the linear relationship satisfied the assay requirements (coefficient of determination >0.999), the limits of quantification were 0.167 to 1.250 µg mL-1, the recoveries ranged from 85.62% to 126.42%, the coefficients of variation were 1.40~12.15%, and no SCFAs in the triglyceride form were potential degradation, and the precision ranging from 0.56% to 9.09%. Our easy, fast, and robust method successfully determined three FSCFAs in raw cow milk without derivatization. Some characteristic features of FSCFAs have been discovered in raw cow milk such as its higher percentages of C4:0 and C6:0. Our research has provided a very valuable method for the future quality and safety control of raw milk and nutritional studies.

14.
EBioMedicine ; 90: 104527, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963238

RESUMO

Major depressive disorder is one of the most disabling mental disorders worldwide. Increasing preclinical and clinical studies have highlighted that compositional and functional (e.g., metabolite) changes in gut microbiota, known as dysbiosis, are associated with the onset and progression of depression via regulating the gut-brain axis. However, the gut microbiota and their metabolites present a double-edged sword in depression. Dysbiosis is involved in the pathogenesis of depression while, at the same time, offering a novel therapeutic target. In this review, we describe the association between dysbiosis and depression, drug-microbiota interactions in antidepressant treatment, and the potential health benefits of microbial-targeted therapeutics in depression, including dietary interventions, fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and postbiotics. With the emergence of microbial research, we describe a new direction for future research and clinical treatment of depression.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Probióticos , Humanos , Depressão/etiologia , Depressão/terapia , Disbiose/terapia , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/complicações , Probióticos/uso terapêutico , Transplante de Microbiota Fecal
15.
Foods ; 11(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36429300

RESUMO

In order to analyze the influence of key additives during processing on the flavor of infant formula, the headspace-gas chromatography-ion mobility spectrometry, electronic tongue, and electronic nose techniques were used to evaluate flavor during the processing of stage 1 infant formula milk powder (0-6 months), including the analysis of seven critical additives. A total of 41 volatile compounds were identified, involving 12 aldehydes, 11 ketones, 9 esters, 4 olefins, 2 alcohols, 2 furans, and 1 acid. The electronic nose metal oxide sensor W5S had the highest response, followed by W1S and W2S, illustrating that these three sensors had great effects on distinguishing samples. The response results of the electronic tongue showed that the three sensory attributes of bitter, salty, and umami, as well as the richness of aftertaste, were more prominent, which contributed significantly to evaluating the taste profile and distinguishing among samples. Raw milk is an essential control point in the flavor formation process of stage 1 infant formula milk powder. Demineralized whey powder is the primary source of potential off-flavor components in hydrolyzed milk protein infant formula. This study revealed the quality characteristics and flavor differences of key additives in the production process of stage 1 infant formula milk powder, which could provide theoretical guidance for the quality control and sensory improvement of the industrialized production of infant formula.

16.
Adv Sci (Weinh) ; 9(35): e2203707, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36285702

RESUMO

The emergence of the coronavirus disease 2019 pandemic has dramatically increased the global prevalence of depression. Unfortunately, antidepressant drugs benefit only a small minority of patients. Thus, there is an urgent need to develop new interventions. Accumulating evidence supports a causal relationship between gut microbiota dysbiosis and depression. To advance microbiota-based diagnostics and therapeutics of depression, a comprehensive overview of microbial alterations in depression is presented to identify effector microbial biomarkers. This procedure generated 215 bacterial taxa from humans and 312 from animal models. Compared to controls, depression shows significant differences in ß-diversity, but no changes in microbial richness and diversity. Additionally, species-specific microbial changes are identified like increased Eggerthella in humans and decreased Acetatifactor in rodent models. Moreover, a disrupted microbiome balance and functional changes, characterized by an enrichment of pro-inflammatory bacteria (e.g., Desulfovibrio and Escherichia/Shigella) and depletion of anti-inflammatory butyrate-producing bacteria (e.g., Bifidobacterium and Faecalibacterium) are consistently shared across species. Confounding effects of geographical region, depression type, and intestinal segments are also investigated. Ultimately, a total of 178 species and subspecies probiotics are identified to alleviate the depressive phenotypes. Current findings provide a foundation for developing microbiota-based diagnostics and therapeutics and advancing microbiota-oriented precision medicine for depression.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Microbiota , Animais , Humanos , Depressão/microbiologia , Depressão/terapia , Intestinos , Bactérias
17.
Animals (Basel) ; 12(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892548

RESUMO

The objective of this study was to determine the effect of whole flaxseed and ground flaxseed supplementation on the composition of fatty acids in plasma and milk, particularly the content of omega-3 polyunsaturated fatty acids (n-3 PUFAs). Thirty Holstein dairy cows were randomly assigned to three treatment groups. Cows were fed a total mixed ration without flaxseed (CK), 1500 g of whole flaxseed (WF), and 1500 g of ground flaxseed (GF) supplementation. There were no differences observed in dry matter intake, milk yield, energy-corrected milk, and 4% fat-corrected milk (p > 0.05). Compared with the CK group, the contents of α-linolenic acid (ALA), eicosatrienoic acid, and eicosapentaenoic acid increased in the plasma and milk WF and GF groups, and the content of docosahexaenoic acid and total n-3 PUFA was higher in GF than the other groups (p < 0.001). The ALA yield increased to 232% and 360% in WF and GF, respectively, compared to the CK group. Compared with the WF group, GF supplementation resulted in an increased milk ALA/ALA intake ratio (p < 0.001). Flaxseed supplementation increased the activity of GSH-Px and decreased the concentration of MDA in milk (p < 0.001). Plasma parameters did not differ among the treatments (p > 0.05). This result indicated that compared with the WF group, GF supplementation in the diet showed higher efficiency in increasing the total n-3 PUFA levels and the milk ALA/ALA intake ratio, and decreased the ratio of n-6 PUFAs to n-3 PUFAs in milk.

18.
Sci Total Environ ; 838(Pt 3): 156382, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660435

RESUMO

Pseudomonas spp. are common microorganisms from cold-storage raw milk, and protease secreted by Pseudomonas spp. can cause the deterioration of stored milk. However, analyses of Pseudomonas spp. diversity and proteolytic activity in raw milk from different regions of China have not been extensively examined. With this aim, the diversity and proteolytic activity of Pseudomonas isolated from 25 raw cow milk samples from Inner Mongolia, Heilongjiang, Gansu, Henan, Anhui, Jiangsu, Chongqing and Hunan of China in different seasons were evaluated by PCR targeting 16S rDNA and rpoD, as well as TNBS method, respectively. A total of 116 Pseudomonas isolates from 25 raw cow milk samples were identified at the species level, including P. fluorescens, P. veronii, P. psychrophila, P. lundensis, P. lactis, P. azotoformans, P. granadensis, P. lurida, P. rhizosphaerae, P. rhodesiae and P. extremorientalis. P. fluorescens accounted for 75.8% of the total. Of all 116 Pseudomonas isolates, 68.9% of them displayed proteolytic activity at 4 °C, 81.9% at 10 °C and 85.3% at 25 °C, respectively. The aprX gene encoded a secreted and heat-resistant metalloprotease that was present in 60.3% of the Pseudomonas isolates tested. The proteases showed residual activity ranged from 73 ±â€¯4% to 84 ±â€¯7% residual activity after the heat treatment at 72 °C for 15 s and 62 ±â€¯3% to 74 ±â€¯2% after the heat treatment at 132 °C for 4 s. This is the first report to compare Pseudomonas spp. diversity and proteolytic activity at species levels in raw milk from different regions of China. The results of this study provide valuable data about the diversity and spoilage potential of Pseudomonas species in raw milk and the thermal resistance of the proteases. Therefore, these findings provide a reference for the importance to prevent Pseudomonas spp. contamination of raw cow milk to ensure the quality and safety of milk and dairy products.


Assuntos
Leite , Pseudomonas , Animais , Bovinos , Feminino , Temperatura Alta , Leite/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise
19.
Front Nutr ; 9: 845150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35578614

RESUMO

Milk is rich in fat, protein, minerals, vitamins, peptides, immunologically active substances, and other nutrients, and it plays an important role in satisfying human nutrition and health. However, dairy product safety incidents caused by microbial contamination have occurred. We found that the total bacterial numbers in the pasteurized product were low and far below the limit requirements of the food safety standards of the European Union, the United States, and China. At the genus level, the primary microbial groups found in milk samples were Acinetobacter, Macrococcus, Pseudomonas, and Lactococcus, while in the equipment rinse water and air samples there was contamination by Stenotrophomonas and Acinetobacter. The Source Tracker model analysis indicated that the microorganisms in the final milk products were significantly related to the contamination in product tanks and raw milk. Therefore, it is the hope that this work can provide guidance to pinpoint contamination problems using the proper quality control sampling at specific stages in the pasteurization process.

20.
Anim Nutr ; 9: 175-183, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35573096

RESUMO

Total milk solid (TMS) content directly reflects the quality of milk. Rumen bacteria ferment dietary components, the process of which generates the precursors for the synthesis of milk solid, therefore, the variation in rumen bacterial community could be associated with milk solid in dairy cows. In this study, 45 healthy mid-lactation Holstein dairy cows with the similar body weight, lactation stage, and milk yield were initially used for the selection of 10 cows with high TMS (HS) and 10 cows with low TMS (LS). All those animals were under the same feeding management, and the individual milk yield was recorded for 14 consecutive days before milk and rumen fluid were sampled. Rumen fluid was used to determine bacterial community by 16S rRNA gene sequencing technique. The HS cows had significantly greater feed intake and milk TMS, fat, protein content than LS cows (P < 0.05). Among the volatile fatty acids (VFA), propionic acid and valeric acid concentrations were significantly greater in HS cows than those in LS cows (P < 0.05). There was no significant difference in the concentrations of acetate, butyrate, isobutyrate, valerate, and the total VFA (P > 0.05), nor was the acetate-to-propionate ratio, pH value, ammonia nitrogen and microbial crude protein concentrations (P > 0.05). Significant differences in the relative abundances of some bacterial genera were found between HS and LS cows. Spearman's rank correlation analysis revealed that TMS content was correlated positively with the abundances of Ruminococcaceae UCG-014, Ruminococcaceae NK4A214 group, Prevotellaceae UCG-001, Butyrivibrio 2, Prevotellaceae UCG-003, Candidatus Saccharimonas, Ruminococcus 2, Lachnospiraceae XPB1014 group, probable genus 10, Eubacterium ventriosum group, but negatively correlated with Pyramidobacte. In addition, Ruminococcaceae UCG-014, Ruminococcus 2, Ruminococcaceae UCG001, probable genus 10 and Eubacterium ventriosum group might boost the total VFA production in the rumen. In conclusion, the dry matter intake of dairy cows and some special bacteria in rumen were significantly associated with TMS content, which suggests the potential function of rumen bacteria contributing to TMS content in dairy cows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...