Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 673: 836-846, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38908283

RESUMO

Covalent organic frameworks (COFs) have gained considerable interest as candidate photocatalysts for hydrogen evolution. In this work, we synthesized ß-keto-enamine-based COFs (TpPa-X, TpDB, and TpDTP) to explore the relations between structures and photocatalytic hydrogen evolution. COFs were divided into two groups: (1) TpPa-X with different substituents attached to the TpPa backbone and (2) COFs featuring diamine linkers of varied lengths (TpDB and TpDTP). Experiments and density functional theory (DFT) calculations show that moderate hydrophobicity is favorable for the photocatalytic hydrogen evolution process, and acceptable contact angles are anticipated to range from 65° to 80°. Naturally, there are comprehensive factors that affect photocatalytic reactions, and the regulation of different backbones and substituents can considerably affect the performance of COFs for photocatalytic hydrogen evolution in terms of electronic structure, specific surface area, surface wettability, carrier separation efficiency, and hydrogen dissociation energy. Results show that TpPa-Cl2 (TpPa-X, X  = Cl2) demonstrates the highest photocatalytic activity, approximately 14.51 mmol g-1h-1, with an apparent quantum efficiency of 4.62 % at 420 nm. This work provides guidance for designing efficient COF-based photocatalysts.

2.
Materials (Basel) ; 16(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37374509

RESUMO

The harm goafs and other underground cavities cause to roads, which could lead to secondary geological hazards, has attracted increased attention. This study focuses on developing and evaluating the effectiveness of foamed lightweight soil grouting material for goaf treatment. The study examines the foam stability of different foaming agent dilution ratios by analyzing foam density, foaming ratio, settlement distance, and bleeding volume. The results show that there is no significant variation in foam settlement distance for different dilution ratios, and the difference in foaming ratio does not exceed 0.4 times. However, the bleeding volume is positively correlated with the dilution ratio of the foaming agent. At a dilution ratio of 60×, the bleeding volume is about 1.5 times greater than that at 40×, which reduces foam stability. Furthermore, an appropriate amount of sodium dodecyl benzene sulfonate improves both the foaming ability of the foaming agent and the stability of the foam. Additionally, this study investigates how the water-solid ratio affects the basic physical properties, water absorption, and stability of foamed lightweight soil. Foamed lightweight soil with target volumetric weights of 6.0 kN/m3 and 7.0 kN/m3 meet the flow value requirement of 170~190 mm when the water-solid ratio ranges are set at 1:1.6~1:1.9 and 1:1.9~1:2.0, respectively. With an increasing proportion of solids in the water-solid ratio, the unconfined compressive strength initially increases and then decreases after 7 and 28 days, reaching its maximum value when the water-solid ratio is between 1:1.7 and 1:1.8. The values of unconfined compressive strength at 28 days are approximately 1.5-2 times higher than those at 7 days. When the water ratio is excessively high, the water absorption rate of foamed lightweight soil increases, resulting in the formation of connected pores inside the material. Therefore, the water-solid ratio should not be set at 1:1.6. During the dry-wet cycle test, the unconfined compressive strength of foamed lightweight soil decreases, but the rate of strength loss is relatively low. The prepared foamed lightweight soil meets the durability requirements during dry-wet cycles. The outcomes of this study may aid the development of enhanced approaches for goaf treatment using foamed lightweight soil grout material.

3.
J Chem Inf Model ; 63(1): 362-374, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36533639

RESUMO

Intrinsically disordered proteins (IDPs) are proteins without a fixed three-dimensional (3D) structure under physiological conditions and are associated with Parkinson's disease, Alzheimer's disease, cancer, cardiovascular disease, amyloidosis, diabetes, and other diseases. Experimental methods can hardly capture the ensemble of diverse conformations for IDPs. Molecular dynamics (MD) simulations can sample continuous conformations that might provide a valuable complement to experimental data. However, the accuracy of MD simulations depends on the quality of force field. In particular, the evolutionary conservation and coevolution of IDPs introduce that current force fields could not precisely reproduce the conformation of IDPs. In order to improve the performance of force field, deep learning and reweighting methods were used to automatically generate personal force field parameters for intrinsically disordered and ordered proteins. At first, the deep learning method predicted more accuracy φ/ψ dihedral of residue than the previous method. Then, reweighting optimized the personal force field parameters for each residue. Finally, typical representative systems such as IDPs, structure protein, and fast-folding protein were used to evaluate this force field. The results indicate that two personal force field parameters (named PPFF1 and PPFF1_af2) could better reproduce the experimental observables than ff03CMAP force field. In summary, this strategy will provide feasibility for the development of precise personal force fields.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Proteínas Intrinsicamente Desordenadas , Humanos , Dobramento de Proteína , Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Conformação Proteica
4.
Polymers (Basel) ; 14(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35746066

RESUMO

The rubber molecular chain in waste vulcanized tire rubber will be crosslinked to form a network structure that would be difficult to degrade in asphalt. Crumb rubber treated by desulfurization activation could form active groups on the surface by interrupting the crosslinking bond to improve the compatibility between crumb rubber powder and asphalt. To explore the influence of activation modes on crumb rubber powder and the corresponding rubber-modified asphalt binder, crumb rubber powder was firstly activated through three commonly used activation methods and asphalt binder samples modified by activated crumb rubber powder were also prepared. The basic properties of activated crumb rubber powder were characterized by infrared spectroscopy, and conventional tests were used to study the conventional physical properties of the asphalt binder. The infrared spectroscopy and elemental analysis showed that the crumb rubber powder was mainly composed of alkanes, alkenes, sulfonic acids, aromatics, and a little silica rubber and antioxidant zinc oxide, which is suitable for asphalt modification. The simple heat activation treatment method is not enough to greatly destroy the cross-linking structure of crumb rubber powder, but the "C=C" bond was destroyed more seriously. Under the action of adjuvants, the polysulfide cross-linking bond could be broken in crumb rubber powder. The heat treatment and chemical treatment could not achieve the purpose of reducing the viscosity and improving the compatibility of rubber asphalt binder through desulfurization activation. The mechanochemical treatment would help to improve the performance of crumb-rubber-powder-modified asphalt binder. The data correlation analysis based on the grey relational degree can provide a reference for the selection of activated crumb rubber powder for different application requirements in the asphalt modification procedure.

5.
Polymers (Basel) ; 14(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406239

RESUMO

A large number of waste tires are in urgent need of effective treatment, and breaking waste tires into crumb rubber powder for modifying asphalt has been proved as a good idea to solve waste tires. Crumb rubber modified asphalt not only has good high and low temperature performance, durability, and aging resistance but can also reduce pavement noise and diseases, which has wide application prospects. In this study, crumb rubber powder was desulfurized by mechanochemical method to prepare desulfurized crumb rubber modified asphalt. During the desulfurization process of crumb rubber, the effects of desulfurization process variables including desulfurizer type, desulfurizer content, and desulfurization mixing temperature and time were considered, and then the physical properties of modified asphalt were tested. The test results showed that after mixing crumb rubber powder with desulfurizer, the viscosity of crumb rubber powder modified asphalt can be reduced. Moreover, the storage stability of crumb rubber powder modified asphalt could also be improved by mixing crumb rubber with desulfurizer. Based on the physical properties of crumb rubber powder modified asphalt, the desulfurization process of selected organic disulfide (OD) desulfurizer was optimized as follows: the OD desulfurizer content was 3%, the desulfurization mixing temperature was 160 °C, and the mixing time was 30 min. In addition, Fourier infrared spectroscopy analysis was carried out to explore the modification mechanism of desulfurized crumb rubber powder modified asphalt. There is no fracture and formation of chemical bonds, and the modification of asphalt by crumb rubber powder is mainly physical modification.

6.
Chem Biol Drug Des ; 95(1): 113-123, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571405

RESUMO

The first step for the HIV-1 virus infecting host cell is bound with the CCR5 chemokine receptor. A set of allosteric inhibitors of oximino-piperidino-piperidine antagonists for CCR5 chemokine receptor was discovered. However, the allosteric mechanism of these inhibitors is still unsolved. Therefore, residue-level dynamics correlation network combining with on molecular dynamics simulation was used to investigate the allosteric mechanism. The dynamics correlation network of bound CCR5 is significantly different from that of free CCR5. The community of the most active complex suggests that the allosteric information can freely transfer from the allosteric site to the effector site of the second extracellular loop, while the information transfers bottleneck for the less active one. Here, a hypothesis was proposed that "binding-induced allosteric mechanism" was used to reveal the allosteric regulation of antagonists and the network perturbation confirmed it. Finally, the shortest path algorithm was used to identify the possible allosteric pathway with Gly173-Lys171-Thr177-Tyr89-LIG which was evaluated by the network perturbation of key residue. Furthermore, the efficiency of allostery for the most active system is the highest among these antagonist complexes. The strategy targeting the allosteric pathway can be used to design novel inhibitors of HIV-1 virus.


Assuntos
Fármacos Anti-HIV/química , Antagonistas dos Receptores CCR5/química , Oximas/química , Piperidinas/química , Receptores CCR5/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Fármacos Anti-HIV/metabolismo , Antagonistas dos Receptores CCR5/metabolismo , Bases de Dados de Proteínas , Desenho de Fármacos , Infecções por HIV/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica
7.
J Chem Theory Comput ; 15(12): 6769-6780, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31657215

RESUMO

Molecular dynamics simulation as an important complement of experiment is widely used to study protein structures and functions. However, previous studies indicate that the current force fields cannot, simultaneously, provide accurate descriptions of folded proteins and intrinsically disordered proteins (IDPs). Therefore, a correction maps (CMAP)-optimized force field based on the Amber ff03 force field (termed ff03CMAP herein) was developed for a balanced sampling of folded proteins and IDPs. Extensive validations of short peptides, folded proteins, disordered proteins, and fast-folding proteins show that simulated chemical shifts, J-coupling constants, order parameters, and residual dipolar couplings (RDCs) with the ff03CMAP force field are in very good agreement with nuclear magnetic resonance measurements and are more accurate than other ff03-series force fields. The influence of solvent models was also investigated. It was found that the combination of ff03CMAP/TIP4P-Ew is suitable for folded proteins, and that of ff03CMAP/TIP4PD is better for disordered proteins. These findings confirm that the newly developed force field ff03CMAP can improve the balance of conformer sampling between folded proteins and IDPs.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular
8.
J Chem Inf Model ; 59(11): 4793-4805, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31613621

RESUMO

Intrinsically disordered proteins and regions (IDPs and IDRs) have attracted increasing interest with their abundance in the human proteome and critical roles in various human diseases. However, the characterization of structural dynamics of IDPs presents a challenge to general experimental methods due to their highly heterogeneous ensembles. Molecular dynamics (MD) simulation has been an alternative method with recent advances in computation power. Nevertheless, it is imperative that eligible predictions are determined by a highly precise force field, but traditional force fields sometimes give a collapsed disorder structure and overestimate the stability of IDPs. Here, we present a novel residue-specific force field, OPLSIDPSFF, to correct backbone dihedral terms for all 20 natural amino acids based on OPLS-AA/L. Extensive tests of 11 IDPs and two short peptides show that the simulated chemical shifts and J-coupling with the OPLSIDPSFF force field are in quantitative agreement with those from NMR experimental observables and are more accurate than the base generic force field. The influences of solvent models were also investigated, and it was found that TIP4P-D water had positive effects on limited observables. Furthermore, OPLSIDPSFF can still be used to model structural and dynamic properties of two tested folded proteins and fast-folding proteins. These findings confirm that the newly developed residue-specific force field OPLSIDPSFF can improve the conformer sampling of intrinsically disordered and folded proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Dobramento de Proteína , Aminoácidos/química , Bases de Dados de Proteínas , Humanos , Simulação de Dinâmica Molecular , Peptídeos/química , Conformação Proteica
9.
Phys Chem Chem Phys ; 21(39): 21918-21931, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31552948

RESUMO

Intrinsically disordered proteins (IDPs) have received increasing attention in recent studies due to their structural heterogeneity and critical biological functions. To fully understand the structural properties and determine accurate ensembles of IDPs, molecular dynamics (MD) simulation was widely used to sample diverse conformations and reveal the structural dynamics. However, the classical state-of-the-art force fields perform well for folded proteins while being unsatisfactory for the simulations of disordered proteins reported in many previous studies. Thus, improved force fields were developed to precisely describe both folded proteins and disordered proteins. Preliminary tests show that our newly developed CHARMM36IDPSFF (C36IDPSFF) force field can well reproduce the experimental observables of several disordered proteins, but more tests on different types of proteins are needed to further evaluate the performance of C36IDPSFF. Here, we extensively simulate short peptides, disordered proteins, and fast-folding proteins as well as folded proteins, and compare the simulated results with the experimental observables. The simulation results show that C36IDPSFF could substantially reproduce the experimental observables for most of the tested proteins but some limitations are also found in the radius of gyration of large disordered proteins and the stability of fast-folding proteins. This force field will facilitate large scale studies of protein structural dynamics and functions using MD simulations.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Modelos Teóricos , Peptídeos/química , Fenômenos Físicos , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...