Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 387: 129571, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37506935

RESUMO

The high levels of free ammonia (FA) challenge the application of partial nitritation (PN) and denitrification (DN) in the treatment of ammonia-rich wastewater. This study explored the impact of high levels of FA on the PN and DN stability and microbial community dynamics. By reducing reflux and increasing influent load, the concentrations of FA in PN and DN reactors increased from 28.9 mg/L and 140.0 mg/L to 1099.8 mg/L and 868.4 mg/L, respectively. During this process, the performance of PN and DN remained stable. The microbial analysis revealed that the Nitrosomonas exhibited strong tolerance to high levels of FA, and its relative abundance was positively correlated with amoABC (R2 0.984) and hao (R2 0.999) genes. The increase in microbial diversity could enhance the resistance ability of PN against the FA impact. In contrast, high levels of FA had scant influence on the microbial community and performance of DN.


Assuntos
Microbiota , Poluentes Químicos da Água , Amônia , Desnitrificação , Reatores Biológicos , Nitrogênio
2.
Environ Res ; 228: 115848, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37024026

RESUMO

With the shortage of phosphorus resources, the concept of phosphorus recovery from wastewater is generally proposed. Recently, phosphorus recovery from wastewater in the form of vivianite has been widely reported, which could be used as a slow-release fertilizer as well as the production of lithium iron phosphate for Li-ion batteries. In this study, chemical precipitation thermodynamic modeling was applied to evaluate the effect of solution factors on vivianite crystallization with actual phosphorus containing industrial wastewater. The modeling results showed that the solution pH influences the concentration of diverse ions, and the initial Fe2+ concentration affects the formation area of vivianite. The saturation index (SI) of vivianite increased with the initial Fe2+ concentration and Fe:P molar ratio. pH 7.0, initial Fe2+ concentration 500 mg/L and Fe:P molar ratio 1.50 were the optimal conditions for phosphorus recovery. Mineral Liberation Analyzer (MLA) accurately determined the purity of vivianite was 24.13%, indicating the feasibility of recovering vivianite from industrial wastewater. In addition, the cost analysis showed that the cost of recovering phosphorus by the vivianite process was 0.925 USD/kg P, which can produce high-value vivianite products and realize "turn waste into treasure".


Assuntos
Fósforo , Águas Residuárias , Fosfatos/química , Compostos Ferrosos , Eliminação de Resíduos Líquidos , Esgotos
3.
Chemosphere ; 298: 134302, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35304209

RESUMO

Pyrolysis combined with land application for dewatered municipal sludge disposal revealed advantages in heavy metals solidification and resource utilization compared with other disposal technologies. In this study, utilizing dewatered municipal sludge for calcium-containing porous adsorbent preparation via pyrolysis was proposed and verified. After pyrolyzing at 900 ° C (Ca-900), the dewatered sludge obtained maximum adsorption capacity (83.95 mg P⋅ g-1) and the adsorption process conformed to the pseudo-second-order model and double layer model. Characteristic analysis showed the predominant adsorption mechanism was precipitation. Continuous column bed experiment indicated 2 g adsorbent could remove 4.27 mg phosphorus from tail wastewater with the initial phosphorus concentration of 1.03 mg ⋅ L-1. No heavy metals leaching was observed from Ca-900 adsorbent with pH value exceeding 1.0, and merely 1% addition of Ca-900 adsorbent (after actual water phosphorus adsorption) with soil could extremely promote the early growth of seedlings. Economic estimates demonstrated that this cost-effective modification could generate the most add-on value production. Based on these results, the strategy of 'one treatment but two uses' was proposed in this study, converting the wastes to resource and providing a native strategy for sludge disposal and resource recovery.


Assuntos
Metais Pesados , Esgotos , Adsorção , Cálcio , Cálcio da Dieta , Carvão Vegetal , Fertilizantes , Fósforo
4.
J Environ Manage ; 296: 113203, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246902

RESUMO

The adsorption process for low concentration phosphorus wastewater treatment has advantages of simple convenience, stable performance and less sludge, while most of current adsorbents fail to be separated for reuse. Meanwhile, few people pay attention to the removal of low concentration phosphorus from tail water by adsorbents. In this study, a newly efficient Fe-Mg-Zr layered double hydroxide beads were prepared by simple in-situ crosslinking method and applied for low concentration phosphorus adsorption from real tail water. The maximum adsorption capacity of Fe-Mg-Zr beads was 21.61 mg/g, showing more practical application value for phosphorus removal. Fixed bed experiments showed that 5.0 g adsorbent could removed 2.12 mg phosphorus from tail wastewater containing 1.03 mg/L phosphorus. The beads adsorbent can be reused with excellent adsorption performance even after five cycles of adsorption-desorption operation. After detailed analyses, it was found that ligand exchange and ion exchange were the dominant mechanisms for phosphorus adsorption by this beads. Overall, the material has the advantages of simple preparation, good adsorption performance, easy separation and recycle, indicating a great potential for low concentration phosphorus wastewater treatment.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Humanos , Concentração de Íons de Hidrogênio , Hidróxidos , Cinética , Fósforo , Águas Residuárias , Água
5.
RSC Adv ; 9(14): 7767-7776, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35521172

RESUMO

This study presents a new type of biomass material for defluoridation from water; the material was prepared by loading tetravalent zirconium ions onto grape pomace produced from grape juicing and wine factories. Experiments showed that the optimum pH of defluoridation is around 3.0, and the fluorine removal efficiency could reach 96.13% for one-time contact. In batchwise adsorption tests, it was very interesting to find that even at pH values near 10, at which traditional adsorbents usually do not function for defluoridation, the removal efficiency of fluoride was still more than 90% for the Zr(iv)-loaded grape pomace (Zr(iv)-GP) biosorbent; proton release from Zr(iv)-GP was confirmed to cause an automatic decrease of the pH, which can save additional acid consumption in the case of one-time use and render the defluoridation more convenient and efficient. The maximum adsorption capacity of Zr(iv)-GP was 7.54 mg g-1; as a comparison, the maximum adsorption capacities of zirconium-loaded strongly acidic ion exchange resin D001 and zirconium-loaded weakly acidic ion exchange resin D113 were evaluated to be 4.85 mg g-1 and 1.14 mg g-1, respectively. The effects of coexisting anions, such as Cl-, NO3-, SO4 2-, CO3 2- and HPO4 2-, on the fluorine removal efficiency were also examined; it was found that CO3 2- and HPO4 2- anions had drastically adverse effects on defluoridation, while Cl-, NO3-, and SO4 2- appeared not to interfere. Real groundwater containing 1.8 mg L-1 fluoride sampled from Guanzhuang Village in Haixing County of Hebei Province was used for defluoridation through a continuous column adsorption process; it was found that pre-adjusting the groundwater pH affected the purification efficiency drastically, i.e., the time of the breakthrough point for the inlet groundwater pH at 3.0 was about 8 times longer than that at the original pH of 8.18. In addition, the Zr(iv)-GP adsorbent retained good adsorption capacity even after 3 cycles of adsorption-desorption-adsorption operations, indicating that the synthesized zirconium-loaded grape pomace is a very promising new fluorine-removing material for groundwater purification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...