Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39063678

RESUMO

Concrete structures face significant challenges in sulfate-rich environments, where sulfate attack can affect their durability and structural integrity. This study explores innovative approaches to enhancing concrete performance by integrating hydrophobic and densification technologies. It emphasizes the critical role of anti-sulfate erosion inhibitors in mitigating sulfate-induced damage, reducing water absorption, and inhibiting corrosive reactions. This research addresses prevalent issues in Chinese engineering projects where high sulfate concentrations are common, necessitating robust solutions for sulfate resistance. Through rigorous testing, including wet-dry cycling tests with 5% and 10% Na2SO4 solutions following the GB/T 50082-2009 standard, concrete formulations achieved exceptional long-term sulfate resistance, meeting or exceeding KS200-grade requirements. These findings provide valuable insights into optimizing concrete durability in sulfate-rich environments, offering practical strategies to enhance infrastructure resilience and reduce maintenance costs.

2.
Sci Rep ; 14(1): 14613, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918478

RESUMO

Prepacked aggregate concrete (PAC) is made by placing coarse aggregates of various sizes into a formwork and then filling the voids between coarse aggregate and grout. The mechanical performance of PAC is dominated by the compactness due to grout filling, but few study considered the pouring methods and grout performance synchronously. The coupled effect of pouring methods and grout performance on the compactness of PAC is investigated in this study. The results show that the gravity pouring method is only suitable for grouts with good flowability. The pump pouring method is more widely used. It can be adapted to grout with poorer fluidity and coarse aggregate with greater apparent density. The ultrasonic pulse velocity test method provides a relatively accurate evaluation of the compactness of PAC. Furthermore, due to the enhanced mechanical properties of PAC, the filed application potential in the preparation of steel tube concrete columns has also been confirmed, where the results exhibited that PAC based steel tube concrete contributed to an enhanced ductility and autogenous shrinkage.

3.
Materials (Basel) ; 17(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893749

RESUMO

Cross-Laminated Timber (CLT) and concrete composite structures represent an architectural system that integrates the strengths of both materials. In this innovative configuration, the CLT and concrete collaborate synergistically, harnessing their individual merits to achieve enhanced structural performance and functionality. Specifically, the CLT offers a lightweight design, superior bending resistance, and immense engineering plasticity, while concrete boasts exceptional compressive strength and durability. This study investigates the mechanical performance of CLT-concrete composite structures through quasi-static reciprocating loading tests in three full-scale CLT shear wall samples. Designed with varying initial prestressing forces and dimensions of the CLT panel, the prestressed CLT-concrete structures demonstrated a reduced dependence on the steel nodes, resulting in an increase in yield load, yield displacement, and maximum load-carrying capacity. Maximum capacity increased by 39.8% and 33.7% under initial prestressing forces of 23 kN and 46 kN on steel strands. Failure occurred due to localized compressive failure on prestressed steel strands and anchor plates. ABAQUS finite element analysis established three refined models, revealing that the increased initial prestressing force moderately enhanced stiffness but reduced ductility under similar cross-sectional dimensions. Furthermore, under consistent CLT material, dimensions, prestressing force, and loading conditions, prestressed CLT-concrete structures exhibited a higher maximum load-bearing capacity than prestressed CLT-steel composite structures. This study proposes structural design recommendations based on experimental and simulation results, incorporating specific assumptions.

4.
Materials (Basel) ; 17(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38793355

RESUMO

Supplementary cementitious materials (SCMs) are eco-friendly cementitious materials that can partially replace ordinary Portland cement (OPC). The occurrence of early-age cracking in OPC-SCM blended cement is a significant factor impacting the mechanical properties and durability of the concrete. This article presents a comprehensive review of the existing research on cracking in OPC-SCM concrete mix at early ages. To assess the effects of SCMs on the early-age cracking of concrete, the properties of blended cement-based concrete, in terms of its viscoelastic behavior, evolution of mechanical performance, and factors that affect the risk of cracking in concrete at early ages, are reviewed. The use of SCMs in OPC-SCM concrete mix can be an effective method for mitigating early-age cracking while improving the properties and durability of concrete structures. Previous research showed that the shrinkage and creep of OPC-SCM concrete mix are lower than those of conventional concrete. Moreover, the lower cement content of OPC-SCM concrete mix resulted in a better resistance to thermal cracking. Proper selection, proportioning, and implementation of SCMs in concrete can help to optimize the performance and reduce the environmental impact of OPC-SCM concrete mix.

5.
Materials (Basel) ; 17(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793412

RESUMO

To mitigate dust pollution generated during various stages of construction activities and reduce the environmental and health hazards posed by airborne dust, this study utilized hydroxyethyl cellulose, glycerol, and isomeric tridecyl alcohol polyoxyethylene ether as raw materials to formulate a composite chemical dust suppressant. The properties of the dust suppressant were characterized through analysis. Employing single-factor experiments, the optimal proportions of the binder, water-retaining agent, and surfactant for the composite dust suppressant were determined. Subsequently, a response surface model was established, and, after analysis and optimization, the optimal mass ratios of each component in the composite dust suppressant were obtained. Under optimal ratios, the physicochemical properties and wind erosion resistance of the composite dust suppressant were analyzed. Finally, the practical application of the suppressant was validated through on-site trials at a construction site. This study revealed that the optimal formulation for the dust suppressant was as follows: 0.2% hydroxyethyl cellulose, 2.097% glycerol, 0.693% isomeric tridecyl alcohol polyoxyethylene ether, and the remainder was pure water. The suppressant is non-toxic, non-corrosive, environmentally friendly, and exhibits excellent moisture retention and bonding properties compared to water. The research findings provide valuable insights for addressing dust pollution issues on construction sites.

6.
Materials (Basel) ; 15(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35591357

RESUMO

Concrete is known as the most globally used construction material, but it releases a huge amount of greenhouse gases due to cement production. Recently, Supplementary Cementitious Materials (SCMs) such as fly ash and Ground Granulated Blast Furnace Slag (GGBFS) have been widely used in concrete to reduce the cement content. However, SCMs can alter the mechanical properties and time-dependent behaviors of concrete and the early age mechanical properties of concrete significantly affect the concrete cracking in the engineering field. Therefore, evaluation of the development of the mechanical properties of SCMs-based concrete is vital. In this paper, the time development of mechanical properties of concrete mixes with various fly ash and GGBFS was experimentally investigated. Four different cement replacement levels including 0%, 20%, 30%, and 40% by fly ash and GGBFS as well as ternary binders were considered. Compressive strength, splitting tensile strength, flexural strength, and elastic modulus of concrete were measured until 28 days. Three additional concrete mixes with ternary binders were also cast to investigate the early-age autogenous shrinkage development until 28 days. In addition, prediction models in existing standards were used and compared to experimental results. The comparison results showed that the prediction models overestimated the compressive strength but underestimated the splitting tensile strength development and autogenous shrinkage. As a result, a model capturing the effect of fly ash and GGBFS on the development of compressive and splitting tensile strength is proposed to improve the prediction accuracy for current standards and empirical models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...