Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Microb Cell Fact ; 22(1): 194, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749574

RESUMO

BACKGROUND: Neutralizing antibody plays a key role in protecting hosts from invasive pathogens and their virulent components. Current high-throughput assays for antibody screening are based on binding activities. However, those antibodies with high affinity may not have neutralizing activities. Subsequent functionality assays are necessary to identify neutralizing antibodies from binders with high affinity to their target antigens, which is laborious and time-consuming. Therefore, a versatile platform that can rapidly identify antibodies with both high binding affinity and neutralizing activity is desired to curb future pandemics like COVID-19. RESULTS: In this proof-of-concept study, we adapted Saccharomyces cerevisiae to either display human antibodies on the yeast surface or secrete soluble antibodies into the cultivation supernatant under a controllable 'switch' through different carbon source induced promoters. Initially, an engineered chimeric-bispecific Fab antibody, derived from humanized nanobodies against both Clostridioides difficile toxin A and B (TcdA and TcdB), was successfully expressed either on the yeast cell surface or in the culture medium with intact bioactivity, suggesting the applicability of our system in antibody display and secretion. Next, a combinatorial Fab library was constructed from B cells isolated from a convalescent patient with a high serological neutralizing titer against TcdB. Following three rounds of magnetic bead enrichment and one round of flow cytometry sorting, antibodies against TcdB were enriched efficiently. We then sorted out single binders with high binding affinity and induced them to express soluble antibodies in culture medium. The neutralizing activity of culture supernatant was analyzed using cell-based assay immediately. This way, we rapidly identified two unique neutralizers (out of seven binders) that can neutralize the cytotoxicity of TcdB. CONCLUSION: The antibody screening platform described here simplifies the neutralizing antibody discovery procedure and will be an attractive alternative for screening functional antibodies against infectious diseases.


Assuntos
Toxinas Bacterianas , COVID-19 , Clostridioides difficile , Humanos , Saccharomyces cerevisiae , Anticorpos Neutralizantes , Toxinas Bacterianas/genética , Anticorpos Antibacterianos
2.
Pharm Dev Technol ; 28(2): 232-239, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789978

RESUMO

The colonic delivery system of toxin neutralizing antibody is a promising method for treating Clostridium difficile infection (CDI) and has some advantages over the parental administration of a neutralizing antibody. However, colonic delivery of biologics presents several challenges, including instability of biologics during encapsulation into the delivery system and harsh conditions in the upper GI tract. In this work, we described a multi-particulate delivery system encapsulating a tetra-valent antibody ABAB-IgG1 with the potential to treat CDI. This work first approved that the cecum injection of ABAB-IgG1 into the lower GI tract of mice could relieve the symptoms, enhance the clinical score, and improve the survival rate of mice during CDI. Then, the antibody was spray layered onto mannitol beads and then enteric coated with pH-sensitive polymers to achieve colon-targeting release. The in vitro release of antibody from the multi-particulate system and the pH-sensitive release of antibody was monitored. The in vivo efficacy of this system was further examined and confirmed in mice and hamsters. In summary, the findings of this study should provide practical information and potential treatment options for CDI through colonic delivery of antibody therapeutics to the lower GI tract using a multi-particulate delivery system.


Assuntos
Anticorpos Neutralizantes , Infecções por Clostridium , Cricetinae , Camundongos , Animais , Anticorpos Neutralizantes/uso terapêutico , Imunoglobulina G , Colo , Infecções por Clostridium/tratamento farmacológico , Trato Gastrointestinal
3.
Biomol Biomed ; 23(2): 259-270, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36226596

RESUMO

Cigarette smoke (CS) is the leading cause of chronic obstructive pulmonary disease (COPD), which is characterized by chronic bronchial inflammation and emphysema. Growing evidence supports the hypothesis that dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) is critically involved in the pathogenesis of CS-mediated COPD. However, the underlying mechanism remains unclear. Here, we report that supressed CFTR expression is strongly associated with abnormal phospholipid metabolism and increased pulmonary inflammation. In a CS-exposed mouse model with COPD-like symptoms, we found that pulmonary expression of sphingosine kinase 2 (SphK2) and sphingosine-1-phosphate (S1P) secretion were significantly upregulated. Therefore, we constructed a SphK2 gene knockout (SphK2-/-) mouse. After CS exposure for six months, histological lung section staining showed disorganized alveolar structure, increased pulmonary fibrosis, and emphysema-like symptoms in wild-type (WT) mice, which were less pronounced in SphK2-/- mice. Further, SphK2 deficiency also decreased CS-induced pulmonary inflammation, which was reflected by a remarkable reduction in pulmonary infiltration of CD45+CD11b+ neutrophils subpopulation and low levels of IL-6 and IL-33 in bronchial alveolar lavage fluid. However, treatment with S1P receptor agonist suppressed CFTR expression and increased Nf-κB-p65 expression and its nuclear translocation in CS-exposed SphK2-/-mice, which also aggravated small airways fibrosis and pulmonary inflammation. In contrast, inhibition of S1P signaling with the S1P receptor analogue FTY720 rescued CFTR expression, suppressed Nf-κB-p65 expression and nuclear translocation, and alleviated pulmonary fibrosis and inflammation after CS exposure. Our results demonstrate that SphK2-mediated S1P production plays a crucial role in the pathogenesis of CS-induced COPD-like disease by impairing CFTR activity and promoting pulmonary inflammation and fibrosis.


Assuntos
Fumar Cigarros , Enfisema , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Fibrose Pulmonar , Animais , Camundongos , Regulador de Condutância Transmembrana em Fibrose Cística , Enfisema/etiologia , Inflamação/complicações , NF-kappa B/metabolismo , Pneumonia/etiologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Enfisema Pulmonar/etiologia , Fibrose Pulmonar/complicações , Receptores de Esfingosina-1-Fosfato/metabolismo , Nicotiana/metabolismo
4.
Gut Pathog ; 14(1): 22, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668452

RESUMO

Clostridioides difficile (C. difficile) is a gram-positive, spore-forming, anaerobic bacterium known to be the most common cause of hospital-acquired and antibiotic-associated diarrhea. C. difficile infection rates are on the rise worldwide and treatment options are limited, indicating a clear need for novel therapeutics. Gnotobiotic piglets are an excellent model to reproduce the acute pseudomembranous colitis (PMC) caused by C. difficile due to their physiological similarities to humans and high susceptibility to infection. Here, we established a gnotobiotic pig model of C. difficile infection and disease using a hypervirulent strain. C. difficile-infected pigs displayed classic signs of C. difficile infection, including severe diarrhea and weight loss. Inoculated pigs had severe gross and microscopic intestinal lesions. C. difficile infection caused an increase in pro-inflammatory cytokines in samples of serum, large intestinal contents, and pleural effusion. C. difficile spores and toxins were detected in the feces of inoculated animals as tested by anaerobic culture and cytotoxicity assays. Successful establishment of this model is key for future work as therapeutics can be evaluated in an environment that accurately mimics what happens in humans. The model is especially suitable for evaluating potential prophylactics and therapeutics, including vaccines and passive immune strategies.

5.
Gut Microbes ; 14(1): 2052698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35319337

RESUMO

Clostridioides difficile is the most prevalent pathogen of nosocomial diarrhea. In the United States, over 450,000 cases of C. difficile infection (CDI), responsible for more than 29,000 deaths, are reported annually in recent years. Because of the emergence of hypervirulent strains and strains less susceptible to vancomycin and fidaxomicin, new therapeutics other than antibiotics are urgently needed. The gut microbiome serves as one of the first-line defenses against C. difficile colonization. The use of antibiotics causes gut microbiota dysbiosis and shifts the status from colonization resistance to infection. Hence, novel CDI biotherapeutics capable of reconstituting normal gut microbiota have become a focus of drug development in this field.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Clostridium/tratamento farmacológico , Humanos , Vancomicina/farmacologia , Vancomicina/uso terapêutico
6.
Int J Pharm ; 610: 121238, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34748814

RESUMO

Spray layering is a technique used to apply drug or functional polymers onto carrier beads; in addition, it can be used as an alternative method for protein drying and to layer protein on a multiparticulate delivery system. In this study, the effects of formulation variables and process parameters on human immunoglobulin G (IgG) properties during spray layering were studied. Excipients including polyvinylpyrrolidone (PVP), trehalose, sucrose, L-arginine monohydrochloride were studied for their effects on improving IgG stability during spray layering. Process parameters including protein solution feed rate, inlet air temperature, inlet air flow rate, and atomization pressure of spray solution were studied using 24 full factorial design with three replicated center points. Adding PVP into the formulation significantly decreased the turbidity of the reconstitution solution and increased the IgG recovery. Adding trehalose, sucrose, or arginine further improved protein recovery after reconstitution and decreased the percentage of IgG aggregation. The Design of Experiments (DOE) results showed no significant effects from the four process factors on the process yield and IgG protein recovery in the range of parameters studied. All main factors except atomization pressure had significant effects on monomer percentage, among which air flow represented the most significant influence. In addition, the inlet air temperature had significant effects on the in vitro binding activity of IgG after spray layering. By optimizing the formulation, we were able to recover the most spray layered IgG and reduce the IgG aggregation during the process. The DOE studies gave insight into how process variables affect the spray layered products.


Assuntos
Excipientes , Trealose , Dessecação , Humanos , Imunoglobulina G , Tamanho da Partícula , Pós , Sacarose
7.
Inorg Chem ; 60(7): 5042-5053, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33706508

RESUMO

A lariat anthraquinone macrocycle functionalized with catechol (H2L) was synthesized via the Mannich reaction. The Mannich base H2L can be partially decomposed into L1·3H2O and HL1·NO3·2H2O in the presence of tetrabutylammonium hydroxide/Al(NO3)3·9H2O in dimethyl sulfoxide (DMSO). Free L1·3H2O is essentially coplanar, while protonated HL1·NO3·2H2O is highly distorted. Dark-green FeCl3·H2L·2H2O powder and Fe2(HL)2Cl4 crystal can be isolated from ethanol (C2H5OH) in high/low H2L concentration. Anthraquinone in H2L is essentially coplanar but distorted in Fe2(HL)2Cl4. The Fe(III) ion in Fe2(HL)2Cl4 adopts a less common five-coordination with three catecholate O and two Cl atoms in the dimer. The distortion of inbound C═O is much higher than that of outbound C═O in anthraquinone in all of these compounds. H2L responds to chlorides of Li+, Na+, K+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+, Fe3+, Cu2+, Zn2+, and Al3+ in a DMSO solution, which can be observed by differential pulse voltammetry, UV-vis, and 1H NMR. All of these metal ions shift Ep of anthraquinone to positive, especially the second reduction peak of anthraquinone. Fe3+, Zn2+, and Al3+ change the reduction of catechol fundamentally. H2L (0.50 mM) shows a chromogenic response to FeCl3 and Fe(NO3)3 to form uncommon 2:1 and 3:2 (H2L/Fe) complexes, both peaking at 748 nm in DMSO. In the presence of 2 equiv of sodium hydroxide (NaOH), the 748 nm absorbance shifts to 777 nm, identical with Fe2(HL)2Cl4 in DMSO. Different from the fast reaction between H2L and FeCl3, Fe(NO3)3 reacts with H2L rather slowly in DMSO. Catechol can coordinate to FeCl3 without any deprotonation in C2H5OH and DMSO. H2L also shows a chromogenic response to fluorides and hydroxides, which peak at 670 and 684 nm, respectively, in DMSO. The binding ratio between H2L and F-/OH- is 1:2. In a higher concentration of hydroxides, a 684 nm greenish-blue 1:2 complex forms immediately, which gradually transforms to a red complex and peaks at ∼530 nm in minutes at room temperature. No color change can be observed in an C2H5OH solution in the presence of OH-.

8.
Sci Transl Med ; 12(567)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115949

RESUMO

Antibiotic-resistant Clostridioides difficile is an anaerobic Gram-positive bacterium that colonizes the colon and is responsible for more than 29,000 deaths in the United States each year. Hence, C. difficile infection (CDI) poses an urgent threat to public health. Antibody-mediated neutralization of TcdA and TcdB toxins, the major virulence factors of CDI, represents an effective strategy to combat the disease without invoking antibiotic resistance. However, current antitoxin approaches are mostly based on parenteral infusion of monoclonal antibodies that are costly, narrow spectrum, and not optimized against the intestinal disease. Here, we engineered probiotic Saccharomyces boulardii to constitutively secrete a single tetra-specific antibody that potently and broadly neutralized both toxins and demonstrated protection against primary and recurrent CDI in both prophylactic and therapeutic mouse models of disease. This yeast immunotherapy is orally administered, can be used concurrently with antibiotics, and may have potential as a prophylactic against CDI risk and as a therapeutic for patients with CDI.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Probióticos , Animais , Proteínas de Bactérias , Clostridioides , Infecções por Clostridium/terapia , Enterotoxinas , Humanos , Imunoterapia , Camundongos , Probióticos/uso terapêutico , Saccharomyces cerevisiae
10.
Nat Struct Mol Biol ; 26(8): 712-719, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31308519

RESUMO

Clostridium difficile is an opportunistic pathogen that establishes in the colon when the gut microbiota are disrupted by antibiotics or disease. C. difficile infection (CDI) is largely caused by two virulence factors, TcdA and TcdB. Here, we report a 3.87-Å-resolution crystal structure of TcdB holotoxin that captures a unique conformation of TcdB at endosomal pH. Complementary biophysical studies suggest that the C-terminal combined repetitive oligopeptides (CROPs) domain of TcdB is dynamic and can sample open and closed conformations that may facilitate modulation of TcdB activity in response to environmental and cellular cues during intoxication. Furthermore, we report three crystal structures of TcdB-antibody complexes that reveal how antibodies could specifically inhibit the activities of individual TcdB domains. Our studies provide novel insight into the structure and function of TcdB holotoxin and identify intrinsic vulnerabilities that could be exploited to develop new therapeutics and vaccines for the treatment of CDI.


Assuntos
Proteínas de Bactérias/química , Toxinas Bacterianas/química , Clostridioides difficile/química , Sequência de Aminoácidos , Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/química , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Sequência Conservada , Cristalografia por Raios X , Endossomos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Potenciais da Membrana , Modelos Moleculares , Fragmentos de Peptídeos/química , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
11.
PLoS Biol ; 17(6): e3000311, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31233493

RESUMO

Clostridium difficile infection (CDI) is a major nosocomial disease associated with significant morbidity and mortality. The pathology of CDI stems primarily from the 2 C. difficile-secreted exotoxins-toxin A (TcdA) and toxin B (TcdB)-that disrupt the tight junctions between epithelial cells leading to the loss of colonic epithelial barrier function. Here, we report the engineering of a series of monomeric and dimeric designed ankyrin repeat proteins (DARPins) for the neutralization of TcdB. The best dimeric DARPin, DLD-4, inhibited TcdB with a half maximal effective concentration (EC50) of 4 pM in vitro, representing an approximately 330-fold higher potency than the Food and Drug Administration (FDA)-approved anti-TcdB monoclonal antibody bezlotoxumab in the same assay. DLD-4 also protected mice from a toxin challenge in vivo. Cryo-electron microscopy (cryo-EM) studies revealed that the 2 constituent DARPins of DLD-4-1.4E and U3-bind the central and C-terminal regions of the delivery domain of TcdB. Competitive enzyme-linked immunosorbent assay (ELISA) studies showed that the DARPins 1.4E and U3 interfere with the interaction between TcdB and its receptors chondroitin sulfate proteoglycan 4 (CSPG4) and frizzled class receptor 2 (FZD2), respectively. Our cryo-EM studies revealed a new conformation of TcdB (both apo- and DARPin-bound at pH 7.4) in which the combined repetitive oligopeptides (CROPS) domain points away from the delivery domain. This conformation of the CROPS domain is in stark contrast to that seen in the negative-stain electron microscopy (EM) structure of TcdA and TcdB at the same pH, in which the CROPS domain bends toward and "kisses" the delivery domain. The ultrapotent anti-TcdB molecules from this study serve as candidate starting points for CDI drug development and provide new biological tools for studying the pathogenicity of C. difficile. The structural insights regarding both the "native" conformation of TcdB and the putative sites of TcdB interaction with the FZD2 receptor, in particular, should help accelerate the development of next-generation anti-C. difficile toxin therapeutics.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/fisiologia , Toxinas Bacterianas/antagonistas & inibidores , Infecções por Clostridium/metabolismo , Animais , Repetição de Anquirina/genética , Anticorpos Monoclonais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Anticorpos Amplamente Neutralizantes , Células CACO-2 , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidade , Microscopia Crioeletrônica , Enterotoxinas/metabolismo , Humanos , Camundongos , Engenharia de Proteínas/métodos
12.
Cell Mol Gastroenterol Hepatol ; 5(4): 611-625, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930981

RESUMO

BACKGROUND & AIMS: Clostridium difficile toxin A (TcdA) and C difficile toxin toxin B (TcdB), the major virulence factors of the bacterium, cause intestinal tissue damage and inflammation. Although the 2 toxins are homologous and share a similar domain structure, TcdA is generally more inflammatory whereas TcdB is more cytotoxic. The functional domain of the toxins that govern the proinflammatory activities of the 2 toxins is unknown. METHODS: Here, we investigated toxin domain functions that regulate the proinflammatory activity of C difficile toxins. By using a mouse ilea loop model, human tissues, and immune cells, we examined the inflammatory responses to a series of chimeric toxins or toxin mutants deficient in specific domain functions. RESULTS: Blocking autoprocessing of TcdB by mutagenesis or chemical inhibition, while reducing cytotoxicity of the toxin, significantly enhanced its proinflammatory activities in the animal model. Furthermore, a noncleavable mutant TcdB was significantly more potent than the wild-type toxin in the induction of proinflammatory cytokines in human colonic tissues and immune cells. CONCLUSIONS: In this study, we identified a novel mechanism of regulating the biological activities of C difficile toxins in that cysteine protease-mediated autoprocessing regulates toxins' proinflammatory activities. Our findings provide new insight into the pathogenesis of C difficile infection and the design of therapeutics against the disease.

13.
Inflamm Bowel Dis ; 24(3): 573-582, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462386

RESUMO

Background: Over the past several decades, there has been a significant increase in the incidence of Clostridium difficile infection (CDI) in patients suffering from inflammatory bowel disease (IBD). However, a wild-type animal model is not available to study these comorbid diseases. Methods: We evaluated the susceptibility to CDI of mice with dextran sulfate sodium salt (DSS)-induced colitis (IBD mice) with or without antibiotic exposure; we examined the histopathology and cytokine response in the concomitant diseases after the model was created. Results: No CDI occurs in healthy control mice, wherease the incidence of CDI in IBD mice is 40%; however, in IBD mice that received antibiotics, the incidence of CDI is 100% and the disease is accompanied by high levels of toxins in the mouse feces and sera. Compared to IBD and CDI alone, those IBD mice infected with C. difficile have more severe symptoms, toxemia, histopathological damage, and higher mortality. Moreover, several proinflammatory cytokines and chemokines are significantly elevated in the colon tissues from IBD mice infected with C. difficile. Conclusions: We, for the first time, demonstrate in an animal model that mice with dextran sulfate sodium induced-inflammatory bowel disease are significantly more susceptible to C. difficile infection, and that the bacterial infection led to more severe disease and death. These findings are consistent with clinical observations, thus, the animal model will permit us to study the pathogenesis of these concurrent diseases and to develop therapeutic strategies against the comorbidity of IBD and CDI.


Assuntos
Antibacterianos/farmacologia , Infecções por Clostridium/complicações , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/complicações , Animais , Clostridioides difficile/isolamento & purificação , Comorbidade , Sulfato de Dextrana , Suscetibilidade a Doenças , Fezes/microbiologia , Incidência , Doenças Inflamatórias Intestinais/microbiologia , Camundongos , Camundongos Endogâmicos C57BL
14.
Sensors (Basel) ; 18(1)2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29320463

RESUMO

Wearable devices have flourished over the past ten years providing great advantages to people and, recently, they have also been used for identity authentication. Most of the authentication methods adopt a one-time authentication manner which cannot provide continuous certification. To address this issue, we present a two-step authentication method based on an own-built fingertip sensor device which can capture motion data (e.g., acceleration and angular velocity) and physiological data (e.g., a photoplethysmography (PPG) signal) simultaneously. When the device is worn on the user's fingertip, it will automatically recognize whether the wearer is a legitimate user or not. More specifically, multisensor data is collected and analyzed to extract representative and intensive features. Then, human activity recognition is applied as the first step to enhance the practicability of the authentication system. After correctly discriminating the motion state, a one-class machine learning algorithm is applied for identity authentication as the second step. When a user wears the device, the authentication process is carried on automatically at set intervals. Analyses were conducted using data from 40 individuals across various operational scenarios. Extensive experiments were executed to examine the effectiveness of the proposed approach, which achieved an average accuracy rate of 98.5% and an F1-score of 86.67%. Our results suggest that the proposed scheme provides a feasible and practical solution for authentication.


Assuntos
Comportamento , Algoritmos , Segurança Computacional , Confidencialidade , Humanos , Aprendizado de Máquina , Telemedicina
15.
Anaerobe ; 48: 249-256, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29031928

RESUMO

Most pathogenic Clostridium difficile produce two major exotoxins TcdA and TcdB, in the absence of which the bacterium is non-pathogenic. While it is important to investigate the role of each toxin in the pathogenesis of C. difficile infection (CDI) using isogenic strains, it is impossible to precisely control the expression levels of individual toxins and exclude bacterial factors that may contribute to the toxins' effects during infection. In this study, we utilized an acute intestinal disease model by injecting purified toxins directly into mouse cecum after a midline laparotomy. We evaluated the physical condition of mice by clinical score and survival, and the intestinal tissue damage and inflammation by histology. Depending on the dose of the toxins, mice developed mild to severe colitis, experienced diarrhea or rapidly died. We found that both purified TcdA and TcdB were able to induce clinical disease, intestinal inflammation, and tissue damage that resembled CDI. TcdA was significantly faster in inducing intestinal inflammation and tissue damage, and was approximately five times more potent than TcdB in terms of inducing severe gut disease and death outcomes in mice. Moreover, we found that the two toxins had significant synergistic effects on disease induction. Comparison of the in vivo toxicity of TcdB from clinical strains revealed that TcdB from an epidemic RT 027 strain was more toxic than the others. Our study thus demonstrates that both TcdA and TcdB, independent of other factors from C. difficile bacterium, are able to cause disease that resembles CDI and highlights the importance of targeting both toxins for vaccines and therapeutics against the disease.


Assuntos
Ceco/microbiologia , Ceco/patologia , Clostridioides difficile/metabolismo , Enterocolite Pseudomembranosa/microbiologia , Enterotoxinas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Biomarcadores , Modelos Animais de Doenças , Enterocolite Pseudomembranosa/mortalidade , Enterocolite Pseudomembranosa/patologia , Enterotoxinas/administração & dosagem , Humanos , Camundongos , Fosforilação
16.
Pharm Res ; 34(12): 2663-2674, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28808837

RESUMO

PURPOSE: There are many important diseases whose treatment could be improved by delivering a therapeutic protein to the colon, for example, Clostridium difficile infection, ulcerative colitis and Crohn's Disease. The goal of this project was to investigate the feasibility of colonic delivery of proteins using multiparticulate beads. METHODS: In this work, bovine serum albumin (BSA) was adopted as a model protein. BSA was spray layered onto beads, followed by coating of an enteric polymer EUDRAGIT® FS 30 D to develop a colonic delivery system. The secondary and tertiary structure change and aggregation of BSA during spray layering process was examined. The BSA layered beads were then challenged in an accelerated stability study using International Council for Harmonization (ICH) conditions. The in vitro release of BSA from enteric coated beads was examined using United States Pharmacopeia (USP) dissolution apparatus 1. RESULTS: No significant changes in the secondary and tertiary structure or aggregation profile of BSA were observed after the spray layering process. Degradation of BSA to different extents was detected after storing at 25°C and 40°C for 38 days. Enteric coated BSA beads were intact in acidic media while released BSA in pH 7.4 phosphate buffer. CONCLUSION: We showed the feasibility of delivering proteins to colon in vitro using multiparticulate system.


Assuntos
Sistemas de Liberação de Medicamentos , Ácidos Polimetacrílicos/química , Soroalbumina Bovina/administração & dosagem , Comprimidos com Revestimento Entérico/química , Animais , Bovinos , Colo/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Agregados Proteicos , Conformação Proteica , Estabilidade Proteica , Soroalbumina Bovina/química
17.
Pathog Dis ; 74(7)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27502696

RESUMO

Clostridium difficile infection (CDI) is the most common cause of antibiotic-associated diarrhea and colitis in developed countries. The disease is mainly mediated via two major exotoxins TcdA and TcdB secreted by the bacterium. We have previously developed a novel, potently neutralizing, tetravalent and bispecific heavy-chain-only single domain (VHH) antibody to both TcdA and TcdB (designated as ABA) that reverses fulminant CDI in mice. Since ABA has a short serum half-life, in this study a replication-deficient recombinant adenovirus expressing ABA was generated and the long-lasting expression of functional ABA was demonstrated in vitro and in vivo Mice transduced with one dose of the adenovirus displayed high levels of serum ABA for more than1 month and were fully protected against systemic toxin challenges. More importantly, the ABA delivered by the adenovirus protected mice from both primary and recurrent CDI. Thus, replication-deficient adenoviral vector may be used to deliver neutralizing antibodies against the toxins in order to prevent CDI and recurrence.


Assuntos
Adenoviridae/genética , Anticorpos Neutralizantes/genética , Clostridioides difficile/imunologia , Infecções por Clostridium/imunologia , Vetores Genéticos/genética , Anticorpos de Domínio Único/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Linhagem Celular , Infecções por Clostridium/microbiologia , Infecções por Clostridium/mortalidade , Infecções por Clostridium/terapia , Modelos Animais de Doenças , Enterotoxinas/imunologia , Expressão Gênica , Vetores Genéticos/administração & dosagem , Imunoterapia , Camundongos , Testes de Neutralização , Anticorpos de Domínio Único/sangue , Anticorpos de Domínio Único/imunologia
18.
Biotechnol Bioeng ; 113(12): 2568-2576, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27260850

RESUMO

Clostridium difficile has emerged as a major cause of infectious diarrhea in hospitalized patients, with increasing mortality rate and annual healthcare costs exceeding $3 billion. Since C. difficile infections are associated with the use of antibiotics, there is an urgent need to develop treatments that can inactivate the bacterium selectively without affecting commensal microflora. Lytic enzymes from bacteria and bacteriophages show promise as highly selective and effective antimicrobial agents. These enzymes often have a modular structure, consisting of a catalytic domain and a binding domain. In the current work, using consensus catalytic domain and cell-wall binding domain sequences as probes, we analyzed in silico the genome of C. difficile, as well as phages infecting C. difficile. We identified two genes encoding cell lytic enzymes with possible activity against C. difficile. We cloned the genes in a suitable expression vector, expressed and purified the protein products, and tested enzyme activity in vitro. These newly identified enzymes were found to be active against C. difficile cells in a dose-dependent manner. We achieved a more than 4-log reduction in the number of viable bacteria within 5 h of application. Moreover, we found that the enzymes were active against a wide range of C. difficile clinical isolates. We also characterized the biocatalytic mechanism by identifying the specific bonds cleaved by these enzymes within the cell wall peptidoglycan. These results suggest a new approach to combating the growing healthcare problem associated with C. difficile infections. Biotechnol. Bioeng. 2016;113: 2568-2576. © 2016 Wiley Periodicals, Inc.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/química , Bacteriólise/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/fisiologia , Enzimas/administração & dosagem , Enzimas/química , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Bacteriólise/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Clostridioides difficile/citologia , Descoberta de Drogas
19.
Pathog Dis ; 74(4): ftw024, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27044305

RESUMO

The glucosyltransferase domain ofClostridium difficiletoxins modifies guanine nucleotide-binding proteins of Rho family. It is the major virulent domain of the holotoxins. Various pathogenic effects ofC. difficiletoxins in response to Rho glucosylation have been investigated including cytoskeleton damage, cell death and inflammation. The most recent studies have revealed some significant characteristics of the holotoxins that are independent of glucosylating activity. These findings arouse discussion about the role of glucosyltransferase activity in toxin pathogenesis and open up new insights for toxin mechanism study. In this review, we summarize the pathogenic effects of glucosyltransferase domain of the toxins in the past years.


Assuntos
Toxinas Bacterianas/metabolismo , Clostridioides difficile/fisiologia , Enterocolite Pseudomembranosa/microbiologia , Glucosiltransferases/metabolismo , Animais , Morte Celular , Citocinas/metabolismo , Citoesqueleto , Modelos Animais de Doenças , Enterocolite Pseudomembranosa/metabolismo , Enterocolite Pseudomembranosa/patologia , Humanos , Mediadores da Inflamação/metabolismo
20.
Gut Microbes ; 6(4): 221-4, 2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26091306

RESUMO

Clostridium difficile TcdB harbors a glucosyltransferase that targets host Rho GTPases. However, the role of the enzyme activity in the induction of host intestinal disease has not been demonstrated. In this study, we established a mouse acute intestinal disease model by cecum injection of wild type and glucosyltransferase-deficient TcdB and a chronic model by delivering toxin intraluminally via engineered surrogate host Bacillus megaterium. We demonstrated, for the first time, that the glucosyltransferase activity of TcdB is essential for inducing disease symptoms and intestinal pathological responses that resemble human disease, highlighting the importance of targeting toxin glucosyltransferase activity for future therapy.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Infecções por Clostridium/patologia , Glucosiltransferases/metabolismo , Glucosiltransferases/toxicidade , Animais , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Peso Corporal , Ceco/patologia , Modelos Animais de Doenças , Glucosiltransferases/genética , Histocitoquímica , Intestinos/patologia , Camundongos , Microscopia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...