Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 568
Filtrar
1.
Inflammation ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822951

RESUMO

Diabetic kidney disease (DKD) is a common microvascular complication of diabetes, inflammation and fibrosis play an important role in its progression. Histone lysine crotonylation (Kcr) was first identified as a new type of post-translational modification in 2011. In recent years, prominent progress has been made in the study of sodium crotonate (NaCr) and histone Kcr in kidney diseases. However, the effects of NaCr and NaCr-induced Kcr on DKD remain unclear. In this study, db/db mice and high glucose-induced human tubular epithelial cells (HK-2) were used respectively, and exogenous NaCr and crotonoyl-coenzyme A (Cr-CoA) as intervention reagents, histone Kcr and DKD-related indicators were detected. The results confirmed that NaCr had an antidiabetic effect and decreased blood glucose and serum lipid levels and alleviated renal function and DKD-related inflammatory and fibrotic damage. NaCr also induced histone Kcr and histone H3K18 crotonylation (H3K18cr). However, NaCr and Cr-CoA-induced histone Kcr and protective effects were reversed by inhibiting the activity of Acyl-CoA synthetase short-chain family member 2 (ACSS2) or histone acyltransferase P300 in vitro. In summary, our data reveal that NaCr may mitigate DKD via an antidiabetic effect as well as through ACSS2 and P300-induced histone Kcr, suggesting that Kcr may be the potential molecular mechanism and prevention target of DKD.

2.
Acta Pharmacol Sin ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802569

RESUMO

Graft-versus-host disease (GVHD), an immunological disorder that arises from donor T cell activation through recognition of host alloantigens, is the major limitation in the application of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Traditional immunosuppressive agents can relieve GVHD, but they induce serious side effects. It is highly required to explore alternative therapeutic strategy. Human amniotic epithelial stem cells (hAESCs) were recently considered as an ideal source for cell therapy with special immune regulatory property. In this study, we evaluated the therapeutic role of hAESCs in the treatment of GVHD, based on our previous developed cGMP-grade hAESCs product. Humanized mouse model of acute GVHD (aGVHD) was established by injection of huPBMCs via the tail vein. For prevention or treatment of aGVHD, hAESCs were injected to the mice on day -1 or on day 7 post-PBMC infusion, respectively. We showed that hAESCs infusion significantly alleviated the disease phenotype, increased the survival rate of aGVHD mice, and ameliorated pathological injuries in aGVHD target organs. We demonstrated that hAESCs directly induced CD4+ T cell polarization, in which Th1 and Th17 subsets were downregulated, and Treg subset was elevated. Correspondingly, the levels of a series of pro-inflammatory cytokines were reduced while the levels of the anti-inflammatory cytokines were upregulated in the presence of hAESCs. We found that hAESCs regulated CD4+ subset polarization in a paracrine mode, in which TGFß and PGE2 were selectively secreted to mediate Treg elevation and Th1/Th17 inhibition, respectively. In addition, transplanted hAESCs preserved the graft-versus-leukemia (GVL) effect by inhibiting leukemia cell growth. More intriguingly, hAESCs infusion in HSCT patients displayed potential anti-GVHD effect with no safety concerns and confirmed the immunoregulatory mechanisms in the preclinical study. We conclude that hAESCs infusion is a promising therapeutic strategy for post-HSCT GVHD without compromising the GVL effect. The clinical trial was registered at www.clinicaltrials.gov as #NCT03764228.

3.
Heliyon ; 10(10): e31265, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803876

RESUMO

Background: Tubulointerstitial fibrosis (TIF) is a critical pathological feature of chronic renal failure (CRF), with oxidative stress (OS) and hypoxic responses in renal proximal tubular epithelial cells playing pivotal roles in disease progression. This study explores the effects of Modified Zhenwu Tang (MZWT) on these processes, aiming to uncover its potential mechanisms in slowing CRF progression. Methods: We used adenine (Ade) to induce CRF in rats, which were then treated with benazepril hydrochloride (Lotensin) and MZWT for 8 weeks. Assessments included liver and renal function, electrolytes, blood lipids, renal tissue pathology, OS levels, the hypoxia-inducible factor (HIF) pathway, inflammatory markers, and other relevant indicators. In vitro, human renal cortical proximal tubular epithelial cells were subjected to hypoxia and lipopolysaccharide for 72 h, with concurrent treatment using MZWT, FM19G11, and N-acetyl-l-cysteine. Measurements taken included reactive oxygen species (ROS), HIF pathway activity, inflammatory markers, and other relevant indicators. Results: Ade treatment induced significant disruptions in renal function, blood lipids, electrolytes, and tubulointerstitial architecture, alongside heightened OS, HIF pathway activation, and inflammatory responses in rats. In vivo, MZWT effectively ameliorated proteinuria, renal dysfunction, lipid and electrolyte imbalances, and renal tissue damage; it also suppressed OS, HIF pathway activation, epithelial-mesenchymal transition (EMT) in proximal tubular epithelial cells, and reduced the production of inflammatory cytokines and collagen fibers. In vitro findings demonstrated that MZWT decreased apoptosis, reduced ROS production, curbed OS, HIF pathway activation, and EMT in proximal tubular epithelial cells, and diminished the output of inflammatory cytokines and collagen. Conclusion: OS and hypoxic responses significantly contribute to TIF development. MZWT mitigates these responses in renal proximal tubular epithelial cells, thereby delaying the progression of CRF.

4.
World J Stem Cells ; 16(5): 525-537, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38817335

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common clinical syndrome with high morbidity and mortality rates. The use of pluripotent stem cells holds great promise for the treatment of AKI. Urine-derived stem cells (USCs) are a novel and versatile cell source in cell-based therapy and regenerative medicine that provide advantages of a noninvasive, simple, and low-cost approach and are induced with high multidifferentiation potential. Whether these cells could serve as a potential stem cell source for the treatment of AKI has not been determined. AIM: To investigate whether USCs can serve as a potential stem cell source to improve renal function and histological structure after experimental AKI. METHODS: Stem cell markers with multidifferentiation potential were isolated from human amniotic fluid. AKI severe combined immune deficiency (SCID) mice models were induced by means of an intramuscular injection with glycerol. USCs isolated from human-voided urine were administered via tail veins. The functional changes in the kidney were assessed by the levels of blood urea nitrogen and serum creatinine. The histologic changes were evaluated by hematoxylin and eosin staining and transferase dUTP nick-end labeling staining. Meanwhile, we compared the regenerative potential of USCs with bone marrow-derived mesenchymal stem cells (MSCs). RESULTS: Treatment with USCs significantly alleviated histological destruction and functional decline. The renal function was rapidly restored after intravenous injection of 5 × 105 human USCs into SCID mice with glycerol-induced AKI compared with injection of saline. Results from secretion assays conducted in vitro demonstrated that both stem cell varieties released a wide array of cytokines and growth factors. This suggests that a mixture of various mediators closely interacts with their biochemical functions. Two types of stem cells showed enhanced tubular cell proliferation and decreased tubular cell apoptosis, although USC treatment was not more effective than MSC treatment. We found that USC therapy significantly improved renal function and histological damage, inhibited inflammation and apoptosis processes in the kidney, and promoted tubular epithelial proliferation. CONCLUSION: Our study demonstrated the potential of USCs for the treatment of AKI, representing a new clinical therapeutic strategy.

5.
J Chem Inf Model ; 64(10): 4348-4358, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38709146

RESUMO

Developing new pharmaceuticals is a costly and time-consuming endeavor fraught with significant safety risks. A critical aspect of drug research and disease therapy is discerning the existence of interactions between drugs and proteins. The evolution of deep learning (DL) in computer science has been remarkably aided in this regard in recent years. Yet, two challenges remain: (i) balancing the extraction of profound, local cohesive characteristics while warding off gradient disappearance and (ii) globally representing and understanding the interactions between the drug and target local attributes, which is vital for delivering molecular level insights indispensable to drug development. In response to these challenges, we propose a DL network structure, MolLoG, primarily comprising two modules: local feature encoders (LFE) and global interactive learning (GIL). Within the LFE module, graph convolution networks and leap blocks capture the local features of drug and protein molecules, respectively. The GIL module enables the efficient amalgamation of feature information, facilitating the global learning of feature structural semantics and procuring multihead attention weights for abstract features stemming from two modalities, providing biologically pertinent explanations for black-box results. Finally, predictive outcomes are achieved by decoding the unified representation via a multilayer perceptron. Our experimental analysis reveals that MolLoG outperforms several cutting-edge baselines across four data sets, delivering superior overall performance and providing satisfactory results when elucidating various facets of drug-target interaction predictions.


Assuntos
Aprendizado Profundo , Proteínas , Proteínas/metabolismo , Proteínas/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Descoberta de Drogas/métodos , Modelos Moleculares
6.
Artigo em Inglês | MEDLINE | ID: mdl-38749100

RESUMO

Cyclosporine A (CsA) is a widely used immunosuppressive drug with a narrow therapeutic index and large individual differences. Its therapeutic and toxic effects are closely related to blood drug concentrations, requiring routine therapeutic drug monitoring (TDM). The current main methods for TDM of CsA are enzyme multiplied immunoassay technique (EMIT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). However, few study on the method comparison of the EMIT and LC-MS/MS for the measurement of whole blood CsA concentration in children has been reported. In this study, we developed a simple and sensitive LC-MS/MS assay for the determination of CsA, and 657 cases of CsA concentrations were determined from 197 pediatric patients by a routine EMIT assay and by the validated in-house LC-MS/MS method on the same batch of samples, aimed to address the aforementioned concern. Consistency between the two assays was evaluated using linear regression and Bland-Altman analysis. The linear range of LC-MS/MS was 0.500-2000 ng/mL and that of the EMIT was 40-500 ng/mL, respectively. Overall, the correlation between the two methods was significant (r-value ranging from 0.8842 to 0.9441). Unsatisfactory consistency was observed in the concentrations < 40 ng/mL (r = 0.7325) and 200-500 ng/mL (r = 0.6851). Bland-Altman plot showed a mean bias of -18.0 % (±1.96 SD, -73.8 to 37.8 %) between EMIT and LC-MS/MS. For Passing-Bablok regression between EMIT and LC-MS/MS did not differ significantly (p > 0.05). In conclusion, the two methods were closely correlated, but the CsA concentration by LC-MS/MS assay was slightly higher than that by EMIT method. Switching from the EMIT assay to the LC-MS/MS method was acceptable, and the LC-MS/MS method will receive broader application in clinical settings due to its better analytical capabilities, but the results need to be further verified in different laboratories.


Assuntos
Ciclosporina , Monitoramento de Medicamentos , Espectrometria de Massas em Tandem , Humanos , Ciclosporina/sangue , Espectrometria de Massas em Tandem/métodos , Modelos Lineares , Cromatografia Líquida/métodos , Criança , Monitoramento de Medicamentos/métodos , Reprodutibilidade dos Testes , Técnica de Imunoensaio Enzimático de Multiplicação , Pré-Escolar , Masculino , Limite de Detecção , Lactente , Imunossupressores/sangue , Imunossupressores/farmacocinética , Feminino , Adolescente , Espectrometria de Massa com Cromatografia Líquida
7.
Cancer Lett ; 592: 216937, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38704134

RESUMO

Dysfunctional bone marrow (BM) endothelial progenitor cells (EPCs) with high levels of reactive oxygen species (ROS) are responsible for defective hematopoiesis in poor graft function (PGF) patients with acute leukemia or myelodysplastic neoplasms post-allotransplant. However, the underlying mechanism by which BM EPCs regulate their intracellular ROS levels and the capacity to support hematopoiesis have not been well clarified. Herein, we demonstrated decreased levels of peroxisome proliferator-activated receptor delta (PPARδ), a lipid-activated nuclear receptor, in BM EPCs of PGF patients compared with those with good graft function (GGF). In vitro assays further identified that PPARδ knockdown contributed to reduced and dysfunctional BM EPCs, characterized by the impaired ability to support hematopoiesis, which were restored by PPARδ overexpression. Moreover, GW501516, an agonist of PPARδ, repaired the damaged BM EPCs triggered by 5-fluorouracil (5FU) in vitro and in vivo. Clinically, activation of PPARδ by GW501516 benefited the damaged BM EPCs from PGF patients or acute leukemia patients in complete remission (CR) post-chemotherapy. Mechanistically, we found that increased expression of NADPH oxidases (NOXs), the main ROS-generating enzymes, may lead to elevated ROS level in BM EPCs, and insufficient PPARδ may trigger BM EPC damage via ROS/p53 pathway. Collectively, we found that defective PPARδ contributes to BM EPC dysfunction, whereas activation of PPARδ in BM EPCs improves their hematopoiesis-supporting ability after myelosuppressive therapy, which may provide a potential therapeutic target not only for patients with leukemia but also for those with other cancers.


Assuntos
Células Progenitoras Endoteliais , Hematopoese , PPAR delta , Espécies Reativas de Oxigênio , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Fluoruracila/farmacologia , Hematopoese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , NADPH Oxidases/metabolismo , PPAR delta/metabolismo , PPAR delta/genética , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo
8.
Sci Adv ; 10(22): eadk9928, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820158

RESUMO

The proton-electron coupling effect induces rich spectrums of electronic states in correlated oxides, opening tempting opportunities for exploring novel devices with multifunctions. Here, via modest Pt-aided hydrogen spillover at room temperature, amounts of protons are introduced into SmNiO3-based devices. In situ structural characterizations together with first-principles calculation reveal that the local Mott transition is reversibly driven by migration and redistribution of the predoped protons. The accompanying giant resistance change results in excellent memristive behaviors under ultralow electric fields. Hierarchical tree-like memory states, an instinct displayed in bio-synapses, are further realized in the devices by spatially varying the proton concentration with electric pulses, showing great promise in artificial neural networks for solving intricate problems. Our research demonstrates the direct and effective control of proton evolution using extremely low electric field, offering an alternative pathway for modifying the functionalities of correlated oxides and constructing low-power consumption intelligent devices and neural network circuits.

10.
Huan Jing Ke Xue ; 45(5): 3107-3118, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629571

RESUMO

The rapid development of society and economy has resulted in a substantial increase in energy consumption, consequently exacerbating pollution issues. Current research predominantly focuses on energy-saving and emission reduction in road transportation within individual cities or the three major economic regions of China:the Yangtze River Delta, the Pearl River Delta, and the Beijing-Tianjin-Hebei Region. However, there is a dearth of studies addressing the southeastern coastal economic region. Located at the heart of China's southeastern coastal economic development, the provinces of Guangdong, Fujian, and Zhejiang unavoidably face challenges associated with energy consumption and emissions while pursuing economic growth. To address these challenges, this study employed a LEAP model to construct various scenarios for road transportation in the key coastal cities of Guangdong, Fujian, and Zhejiang from 2015 to 2035. These scenarios included a baseline scenario (BAU), an existing policy scenario (EPS), and an improved policy scenario (MPS). The MPS and EPS encompassed vehicle structure optimization (VSO), improved fuel economy (IFE), and reduced annual average mileage (RDM). By simulating and evaluating these scenarios, the energy-saving and emission reduction potentials of road transportation in the key coastal cities were assessed. The results indicated that, in the primary scenario, the MPS exhibited the most significant improvements in energy-saving, carbon reduction, and pollutant reduction effects. By 2035, the MPS achieved a remarkable 75% energy-saving rate compared to that in the baseline scenario, accompanied by reductions of 68%, 59%, 66%, 70%, and 64% in CO2, CO, NOx, PM2.5, and SO2 emissions, respectively. In the secondary scenario, the improved scenario of enhancing fuel economy achieved a notable 30% reduction in energy consumption. Additionally, the scenarios involving vehicle structure adjustment (yielding reductions of 36%, 30%, 36%, 26%, and 40%) and annual average mileage reduction (resulting in reductions of 37%, 37%, 36%, 37%, and 36%) demonstrated significant reductions in CO2, CO, NOx, PM2.5, and SO2 emissions.

11.
Health Sci Rep ; 7(4): e1988, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572119

RESUMO

Background and Aims: To assess patient comfort, wound healing, and scarring at the 6-month follow-up of split-skin graft donor sites treated with Ba-Hao burn ointment (BHBO) gauze, a compound preparation of traditional Chinese medicine since 1970s, compared with petrolatum gauze. Methods: Thirty patients admitted to the Department of Burns of the First Affiliated Hospital of Anhui Medical University between September 2021 and September 2022 participated in this randomized, prospective, self-control clinical study. After harvesting the split skin, donor sites were divided into two parts along the midline. BHBO gauze was applied to half of the donor wounds, and petrolatum gauze was applied to the other half. The wound healing time, pain scores on the postoperative Days 3, 6, and 9, and Vancouver Scar Scale (VSS) score at the 6-month follow-up were assessed. Results: The wound healing time was significantly shorter in the BHBO group than in the control group (10.07 ± 1.48 days vs. 11.50 ± 1.74 days, p < 0.001). On postoperative Days 3 and 6, the pain scores quantified by visual analog scores were significantly lower in the BHBO group than in the control group (5.33 ± 1.54 and 4.17 ± 1.51, respectively vs. 7.57 ± 1.41 and 5.20 ± 1.47, respectively). The difference in the visual analog scale score on postoperative Day 9 between the groups was not significant (p > 0.05). Microbiological assessment revealed the absence of bacterial contamination in both groups. At the 6-month follow up, the VSS score was significantly lower in the BHBO group (6.67 ± 1.92) than in the control group (9.57 ± 1.55). Conclusion: BHBO resulted in faster donor-site healing, reduced postoperative pain, and improved scar quality at the 6-month follow-up than petrolatum gauze alone.

12.
Heliyon ; 10(7): e27362, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560168

RESUMO

Background: Primary liver cancer (PLC) is a prevalent malignancy of the digestive system characterized by insidious symptom onset and a generally poor prognosis. Recent studies have highlighted a significant correlation between the initiation and prognosis of liver cancer and the immune function of PLC patients. Purpose: Revealing the expression of PLC-related immune genes and the characteristics of immune cell infiltration provides assistance for the analysis of clinical pathological parameters and prognosis of PLC patients. Methods: PLC-related differentially expressed genes (DEGs) with a median absolute deviation (MAD > 0.5) were identified from TCGA and GEO databases. These DEGs were intersected with immune-related genes (IRGs) from the ImmPort database to obtain PLC-related IRGs. The method of constructing a prognostic model through immune-related gene pairs (IRGPs) is used to obtain IRGPs and conduct the selection of central immune genes. The central immune genes obtained from the selection of IRGPs are validated in PLC. Subsequently, the relative proportions of 22 types of immune cells in different immune risk groups are evaluated, and the differential characteristics of PLC-related immune cells are verified through animal experiments. Results: Through database screening and the construction of an IRGP prognosis model, 84 pairs of IRGPs (P < 0.001) were ultimately obtained. Analysis of these 84 IRGPs revealed 11 central immune genes related to PLC, showing differential expression in liver cancer tissues compared to normal liver tissues. Results from the CiberSort platform indicate differential expression of immune cells such as naive B cells, macrophages, and neutrophils in different immune risk groups. Animal experiments demonstrated altered immune cell proportions in H22 tumor-bearing mice, validating findings from peripheral blood and spleen homogenate analyses. Conclusion: Our study successfully predicted and validated PLC-related IRGs and immune cells, suggesting their potential as prognostic indicators and therapeutic targets for PLC.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38565964

RESUMO

Graft failure is a fatal complication following allogeneic stem cell transplantation where a second transplantation is usually required for salvage. However, there are no recommended regimens for second transplantations for graft failure, especially in the haploidentical transplant setting. We recently reported encouraging outcomes using a novel method (haploidentical transplantation from a different donor after conditioning with fludarabine and cyclophosphamide). Herein, we report updated outcomes in 30 patients using this method. The median time of the second transplantation was 96.5 (33-215) days after the first transplantation. Except for one patient who died at +19d and before engraftment, neutrophil engraftments were achieved in all patients at 11 (8-24) days, while platelet engraftments were achieved in 22 (75.8%) patients at 17.5 (9-140) days. The 1-year OS and DFS were 60% and 53.3%, and CIR and TRM was 6.7% and 33.3%, respectively. Compared with the historical group, neutrophil engraftment (100% versus 58.5%, p < 0.001) and platelet engraftment (75.8% versus 32.3%, p < 0.001) were better in the novel regimen group, and OS was also improved (60.0% versus 26.4%, p = 0.011). In conclusion, salvage haploidentical transplantation from a different donor using the novel regimen represents a promising option to rescue patients with graft failure after the first haploidentical transplantation.

14.
Saudi J Gastroenterol ; 30(3): 173-180, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629327

RESUMO

BACKGROUND: Older patients with constipation are at higher risk for inadequate bowel preparation, but there are currently no targeted strategies. This study aims to develop an abdominal vibration combined with walking exercise (AVCWE) program and assess its feasibility among older patients with constipation. METHODS: Phase I: Using the Delphi technique, eight experts across three professional fields were consulted to develop the AVCWE program. The experts evaluated and provided recommendations on demonstration videos and detailed descriptions of the preliminary protocol. Phase II: A single-arm feasibility study of the AVCWE program was conducted on 30 older patients with constipation undergoing colonoscopy at a tertiary hospital in China. A 10-point exercise program evaluation form and several open-ended questions were used to gather feedback from participants regarding the program. In both phases, content analysis was used to critically analyze and summarize qualitative suggestions for protocol modifications. RESULTS: Based on feedback from the expert panel, the AVCWE program developed in Phase I included two procedures during laxative ingestion: at least 5,500 steps of walking exercise and two cycles of moderate-intensity abdominal vibration (each cycle consisted of 10 min of vibration and 10 min of rest). The feasibility study in Phase II showed high positive patient feedback scores for the program, ranging from 9.07 ± 0.74 to 9.73 ± 0.52. CONCLUSION: The AVCWE program was developed by eight multidisciplinary experts and was well accepted by 30 older patients with constipation. Study participants believed that this program was simple, safe, appropriate, and helpful for their bowel preparation. The findings of this study may provide valuable information for optimizing bowel preparation in older patients with constipation.


Assuntos
Constipação Intestinal , Terapia por Exercício , Estudos de Viabilidade , Vibração , Caminhada , Humanos , Constipação Intestinal/terapia , Constipação Intestinal/fisiopatologia , Masculino , Feminino , Caminhada/fisiologia , Idoso , Terapia por Exercício/métodos , Vibração/uso terapêutico , Colonoscopia/métodos , Abdome , Pessoa de Meia-Idade , Técnica Delphi , China/epidemiologia , Idoso de 80 Anos ou mais , Resultado do Tratamento
16.
Cancer Res ; 84(9): 1460-1474, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593213

RESUMO

Patients with triple-negative breast cancer (TNBC) have a poor prognosis due to the lack of effective molecular targets for therapeutic intervention. Here we found that the long noncoding RNA (lncRNA) MILIP supports TNBC cell survival, proliferation, and tumorigenicity by complexing with transfer RNAs (tRNA) to promote protein production, thus representing a potential therapeutic target in TNBC. MILIP was expressed at high levels in TNBC cells that commonly harbor loss-of-function mutations of the tumor suppressor p53, and MILIP silencing suppressed TNBC cell viability and xenograft growth, indicating that MILIP functions distinctively in TNBC beyond its established role in repressing p53 in other types of cancers. Mechanistic investigations revealed that MILIP interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1α1) and formed an RNA-RNA duplex with the type II tRNAs tRNALeu and tRNASer through their variable loops, which facilitated the binding of eEF1α1 to these tRNAs. Disrupting the interaction between MILIP and eEF1α1 or tRNAs diminished protein synthesis and cell viability. Targeting MILIP inhibited TNBC growth and cooperated with the clinically available protein synthesis inhibitor omacetaxine mepesuccinate in vivo. Collectively, these results identify MILIP as an RNA translation elongation factor that promotes protein production in TNBC cells and reveal the therapeutic potential of targeting MILIP, alone and in combination with other types of protein synthesis inhibitors, for TNBC treatment. SIGNIFICANCE: LncRNA MILIP plays a key role in supporting protein production in TNBC by forming complexes with tRNAs and eEF1α1, which confers sensitivity to combined MILIP targeting and protein synthesis inhibitors.


Assuntos
Proliferação de Células , Fator 1 de Elongação de Peptídeos , Biossíntese de Proteínas , RNA Longo não Codificante , RNA de Transferência , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Feminino , RNA de Transferência/genética , RNA de Transferência/metabolismo , Animais , Camundongos , Fator 1 de Elongação de Peptídeos/metabolismo , Fator 1 de Elongação de Peptídeos/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Regulação Neoplásica da Expressão Gênica
17.
Pharmacol Res ; 202: 107122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428703

RESUMO

The ectonucleotidase CD39 has been regarded as a promising immune checkpoint in solid tumors. However, the expression of CD39 by tumor-infiltrating CD8+ T cells as well as their potential roles and clinical implications in human gastric cancer (GC) remain largely unknown. Here, we found that GC-infiltrating CD8+ T cells contained a fraction of CD39hi cells that constituted about 6.6% of total CD8+ T cells in tumors. These CD39hi cells enriched for GC-infiltrating CD8+ T cells with features of exhaustion in transcriptional, phenotypic, metabolic and functional profiles. Additionally, GC-infiltrating CD39hiCD8+ T cells were also identified for tumor-reactive T cells, as these cells expanded in vitro were able to recognize autologous tumor organoids and induced more tumor cell apoptosis than those of expanded their CD39int and CD39-CD8+ counterparts. Furthermore, CD39 enzymatic activity controlled GC-infiltrating CD39hiCD8+ T cell effector function, and blockade of CD39 efficiently enhanced their production of cytokines IFN-γ and TNF-α. Finally, high percentages of GC-infiltrating CD39hiCD8+ T cells correlated with tumor progression and independently predicted patients' poor overall survival. These findings provide novel insights into the association of CD39 expression level on CD8+ T cells with their features and potential clinical implications in GC, and empowering those exhausted tumor-reactive CD39hiCD8+ T cells through CD39 inhibition to circumvent the suppressor program may be an attractive therapeutic strategy against GC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Lancet Microbe ; 5(5): e442-e451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467129

RESUMO

BACKGROUND: The recent discovery of emerging relapsing fever group Borrelia (RFGB) species, such as Borrelia miyamotoi, poses a growing threat to public health. However, the global distribution and associated risk burden of these species remain uncertain. We aimed to map the diversity, distribution, and potential infection risk of RFGB. METHODS: We searched PubMed, Web of Science, GenBank, CNKI, and eLibrary from Jan 1, 1874, to Dec 31, 2022, for published articles without language restriction to extract distribution data for RFGB detection in vectors, animals, and humans, and clinical information about human patients. Only articles documenting RFGB infection events were included in this study, and data for RFGB detection in vectors, animals, or humans were composed into a dataset. We used three machine learning algorithms (boosted regression trees, random forest, and least absolute shrinkage and selection operator logistic regression) to assess the environmental, ecoclimatic, biological, and socioeconomic factors associated with the occurrence of four major RFGB species: Borrelia miyamotoi, Borrelia lonestari, Borrelia crocidurae, and Borrelia hermsii; and mapped their worldwide risk level. FINDINGS: We retrieved 13 959 unique studies, among which 697 met the selection criteria and were used for data extraction. 29 RFGB species have been recorded worldwide, of which 27 have been identified from 63 tick species, 12 from 61 wild animals, and ten from domestic animals. 16 RFGB species caused human infection, with a cumulative count of 26 583 cases reported from Jan 1, 1874, to Dec 31, 2022. Borrelia recurrentis (17 084 cases) and Borrelia persica (2045 cases) accounted for the highest proportion of human infection. B miyamotoi showed the widest distribution among all RFGB, with a predicted environmentally suitable area of 6·92 million km2, followed by B lonestari (1·69 million km2), B crocidurae (1·67 million km2), and B hermsii (1·48 million km2). The habitat suitability index of vector ticks and climatic factors, such as the annual mean temperature, have the most significant effect among all predictive models for the geographical distribution of the four major RFGB species. INTERPRETATION: The predicted high-risk regions are considerably larger than in previous reports. Identification, surveillance, and diagnosis of RFGB infections should be prioritised in high-risk areas, especially within low-income regions. FUNDING: National Key Research and Development Program of China.


Assuntos
Borrelia , Febre Recorrente , Borrelia/isolamento & purificação , Humanos , Febre Recorrente/epidemiologia , Febre Recorrente/microbiologia , Febre Recorrente/diagnóstico , Animais
19.
Transl Psychiatry ; 14(1): 151, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504095

RESUMO

Integrating CYP2D6 genotyping and therapeutic drug monitoring (TDM) is crucial for guiding individualized atomoxetine therapy in children with attention-deficit/hyperactivity disorder (ADHD). The aim of this retrospective study was (1) to investigate the link between the efficacy and tolerability of atomoxetine in children with ADHD and plasma atomoxetine concentrations based on their CYP2D6 genotypes; (2) to offer TDM reference range recommendations for atomoxetine based on the CYP2D6 genotypes of children receiving different dosage regimens. This retrospective study covered children and adolescents with ADHD between the ages of 6 and <18, who visited the psychological and behavioral clinic of Children's Hospital of Nanjing Medical University from June 1, 2021, to January 31, 2023. The demographic information and laboratory examination data, including CYP2D6 genotype tests and routine TDM of atomoxetine were obtained from the hospital information system. We used univariate analysis, Mann-Whitney U nonparametric test, Kruskal-Wallis test, and the receiver operating characteristic (ROC) curve to investigate outcomes of interest. 515 plasma atomoxetine concentrations of 385 children (325 boys and 60 girls) with ADHD between 6 and 16 years of age were included for statistical analysis in this study. Based on genotyping results, >60% of enrolled children belonged to the CYP2D6 extensive metabolizer (EM), while <40% fell into the intermediate metabolizer (IM). CYP2D6 IMs exhibited higher dose-corrected plasma atomoxetine concentrations by 1.4-2.2 folds than those CYP2D6 EMs. Moreover, CYP2D6 IMs exhibited a higher response rate compare to EMs (93.55% vs 85.71%, P = 0.0132), with higher peak plasma atomoxetine concentrations by 1.67 times than those of EMs. Further ROC analysis revealed that individuals under once daily in the morning (q.m.) dosing regimen exhibited a more effective response to atomoxetine when their levels were ≥ 268 ng/mL (AUC = 0.710, P < 0.001). In addition, CYP2D6 IMs receiving q.m. dosing of atomoxetine were more likely to experience adverse reactions in the central nervous system and gastrointestinal system when plasma atomoxetine concentrations reach 465 and 509 ng/mL, respectively. The findings in this study provided promising treatment strategy for Chinese children with ADHD based on their CYP2D6 genotypes and plasma atomoxetine concentration monitoring. A peak plasma atomoxetine concentration higher than 268 ng/mL might be requisite for q.m. dosing. Assuredly, to validate and reinforce these initial findings, it is necessary to collect further data in controlled studies with a larger sample size.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adolescente , Criança , Feminino , Humanos , Masculino , Inibidores da Captação Adrenérgica/efeitos adversos , Cloridrato de Atomoxetina/efeitos adversos , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Citocromo P-450 CYP2D6/genética , Monitoramento de Medicamentos , Genótipo , Propilaminas/efeitos adversos , Estudos Retrospectivos , Lactente , Pré-Escolar
20.
Clin Transl Immunology ; 13(3): e1499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501063

RESUMO

Objectives: CD4+ T cell helper and regulatory function in human cancers has been well characterised. However, the definition of tumor-infiltrating CD4+ T cell exhaustion and how it contributes to the immune response and disease progression in human gastric cancer (GC) remain largely unknown. Methods: A total of 128 GC patients were enrolled in the study. The expression of CD39 and PD-1 on CD4+ T cells in the different samples was analysed by flow cytometry. GC-infiltrating CD4+ T cell subpopulations based on CD39 expression were phenotypically and functionally assessed. The role of CD39 in the immune response of GC-infiltrating T cells was investigated by inhibiting CD39 enzymatic activity. Results: In comparison with CD4+ T cells from the non-tumor tissues, significantly more GC-infiltrating CD4+ T cells expressed CD39. Most GC-infiltrating CD39+CD4+ T cells exhibited CD45RA-CCR7- effector-memory phenotype expressing more exhaustion-associated inhibitory molecules and transcription factors and produced less TNF-α, IFN-γ and cytolytic molecules than their CD39-CD4+ counterparts. Moreover, ex vivo inhibition of CD39 enzymatic activity enhanced their functional potential reflected by TNF-α and IFN-γ production. Finally, increased percentages of GC-infiltrating CD39+CD4+ T cells were positively associated with disease progression and patients' poorer overall survival. Conclusion: Our study demonstrates that CD39 expression defines GC-infiltrating CD4+ T cell exhaustion and their immunosuppressive function. Targeting CD39 may be a promising therapeutic strategy for treating GC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...