Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
ACS Omega ; 9(30): 32481-32501, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100303

RESUMO

This article used Carboniferous-Permian coals from the Jungar, Hedong, and Weibei Coalfields in the east of the Ordos Basin as research samples. Characteristics of coal quality, petrology, mineralogy, and geochemistry were analyzed by proximate analysis, inductively coupled plasma mass spectrometry, X-ray fluorescence spectroscopy, X-ray diffraction analysis, scanning electron microscopy-energy spectrum analysis, and incident light microscope. The enrichment regulations, distribution patterns, and occurrences of REY (rare earth element and yttrium) in coal under different geological conditions were compared. Geological significance and the influence of REY were then discussed. The average REY of Permian coal in the eastern margin of the basin is 127.9 µg/g, CC = 1.87, and the average REY of Carboniferous coal is 117.49 µg/g, CC = 1.72, which are within the normal enrichment range. The inorganic affinity of REYs in the study area is strong and mainly occurs in clay minerals and detrital phosphates and correlates well with LREY. The Permian coal sedimentary environment is more oxidized than the Taiyuan formation, and the Carboniferous coal sedimentary environment is noticeably more affected by marine water. With an increasing degree of coalification, the concentration of rare earth elements (REE) in high-rank coal vitrinite is lower than that in inertinite. In contrast, the concentration of REEs in low-rank coal is the opposite. This is because the oxygen-containing functional groups that can combine with REEs in vitrinite reduce significantly, resulting in the loss of trace elements into other forms. The provenance of the northern and central regions of the study area is mainly sedimentary rocks, granite, alkaline basalt, and continental tholeiite, while the southern region is mainly granite and sedimentary rocks.

2.
Luminescence ; 39(5): e4764, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684508

RESUMO

Ultrasensitive, selective, and non-invasive detection of fibrin in human serum is critical for disease diagnosis. So far, the development of high-performance and ultrasensitive biosensors maintains core challenges for biosensing. Herein, we designed a novel ribbon nanoprobe for ultrasensitive detection of fibrin. The probe contains gold nanoparticles (AuNPs) that can not only link with homing peptide Cys-Arg-Glu-Lys-Ala (CREKA) to recognize fibrin but also carry long DNA belts to form G-quadruplex-based DNAzyme, catalyzing the chemiluminescence of luminol-hydrogen peroxide (H2O2) reaction. Combined with the second amplification procedure of rolling circle amplification (RCA), the assay exhibits excellent sensitivity with a detection limit of 0.04 fmol L-1 fibrin based on the 3-sigma. Furthermore, the biosensor shows high specificity on fibrin in samples because the structure of antibody-fibrin-homing peptide was employed to double recognize fibrin. Altogether, the simple and inexpensive approach may present a great potential for reliable detection of biomarkers.


Assuntos
Técnicas Biossensoriais , Fibrina , Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Fibrina/química , Fibrina/análise , Humanos , DNA Catalítico/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Limite de Detecção , Luminol/química , Quadruplex G
3.
Luminescence ; 39(3): e4716, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497410

RESUMO

A fluorescence resonance energy transfer (FRET) method was developed for double-stranded deoxyribonucleic acid (dsDNA) detection in living cells using the RecA-GFP (green fluorescent protein) fusion protein filament. In brief, the thiol-modified single-stranded DNA (ssDNA) was attached to gold nanoparticles (AuNPs); on the contrary, the prepared RecA-GFP fusion protein interacted with ssDNA. Due to the FRET between AuNPs and RecA-GFP, fluorescence of RecA-GFP fusion protein was quenched. In the presence of homologous dsDNA, homologous recombination occurred to release RecA-GFP fusion protein. Thus, the fluorescence of RecA-GFP was recovered. The dsDNA concentration was detected using fluorescence intensity of RecA-GFP. Under optimal conditions, this method could detect dsDNA activity as low as 0.015 optical density (OD) Escherichia coli cells, with a wide linear range from 0.05 to 0.9 OD cells, and the regression equation was ΔF = 342.7c + 78.9, with a linear relationship coefficient of 0.9920. Therefore, it provided a promising approach for the selective detection of dsDNA in living cells for early clinical diagnosis of genetic diseases.


Assuntos
DNA de Cadeia Simples , Nanopartículas Metálicas , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Ouro/metabolismo , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
4.
Sci Data ; 11(1): 210, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360815

RESUMO

Exosomes play a crucial role in intercellular communication and can be used as biomarkers for diagnostic and therapeutic clinical applications. However, systematic studies in cancer-associated exosomal nucleic acids remain a big challenge. Here, we developed ExMdb, a comprehensive database of exosomal nucleic acid biomarkers and disease-gene associations curated from published literature and high-throughput datasets. We performed a comprehensive curation of exosome properties including 4,586 experimentally supported gene-disease associations, 13,768 diagnostic and therapeutic biomarkers, and 312,049 nucleic acid subcellular locations. To characterize expression variation of exosomal molecules and identify causal factors of complex diseases, we have also collected 164 high-throughput datasets, including bulk and single-cell RNA sequencing (scRNA-seq) data. Based on these datasets, we performed various bioinformatics and statistical analyses to support our conclusions and advance our knowledge of exosome biology. Collectively, our dataset will serve as an essential resource for investigating the regulatory mechanisms of complex diseases and improving the development of diagnostic and therapeutic biomarkers.


Assuntos
Conjuntos de Dados como Assunto , Exossomos , Neoplasias , Ácidos Nucleicos , Humanos , Biomarcadores , Biomarcadores Tumorais , Biologia Computacional , Exossomos/genética , Neoplasias/diagnóstico , Neoplasias/genética , Ácidos Nucleicos/genética , Bases de Dados Genéticas
5.
J Ovarian Res ; 16(1): 200, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817210

RESUMO

BACKGROUND: Patients with epithelial ovarian carcinoma (EOC) are usually diagnosed at an advanced stage with tumour cell invasion. However, identifying the underlying molecular mechanisms and biomarkers of EOC proliferation and invasion remains challenging. RESULTS: Herein, we explored the relationship between tumour microenvironment (TME) reprogramming and tissue invasion based on single-cell RNA sequencing (scRNA-seq) datasets. Interestingly, hypoxia, oxidative phosphorylation (OXPHOS) and glycolysis, which have biologically active trajectories during epithelial mesenchymal transition (EMT), were positively correlated. Moreover, energy metabolism and anti-apoptotic activity were found to be critical contributors to intratumor heterogeneity. In addition, HMGA1, EGR1 and RUNX1 were found to be critical drivers of the EMT process in EOC. Experimental validation revealed that suppressing EGR1 expression inhibited tumour cell invasion, significantly upregulated the expression of E-cadherin and decreased the expression of N-cadherin. In cell components analysis, cancer-associated fibroblasts (CAFs) were found to significantly contribute to immune infiltration and tumour invasion, and the accumulation of CAFs was associated with poorer patient survival. CONCLUSION: We revealed the molecular mechanism and biomarkers of tumour invasion and TME reprogramming in EOC, which provides effective targets for the suppression of tumour invasion.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Carcinoma Epitelial do Ovário/genética , Neoplasias Ovarianas/patologia , Microambiente Tumoral/genética , Transição Epitelial-Mesenquimal/genética , Biomarcadores , Linhagem Celular Tumoral
6.
Foods ; 11(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36429314

RESUMO

Until now, Streptoverticillium mobaraense transglutaminase (TG) is the only commercialized TG, but limited information is known about its selection tendency on crosslinking sites at the protein level, restricting its application in the food industry. Here, four recombinant Bacillus TGs were stable in a broad range of pH (5.0−9.0) and temperatures (<50 °C), exhibiting their maximum activity at 50−60 °C and pH 6.0−7.0. Among them, TG of B. cereus (BCETG) demonstrated the maximal specific activity of 177 U/mg. A structural analysis indicated that the Ala147-Ala156 region in the substrate tunnel of BCETG played a vital role in catalytic activity. Furthermore, bovine serum albumin, as well as nearly all protein ingredients in soy protein isolate and whey protein, could be cross-linked by BCETG, and the internal crosslinking paths of three protein substrates were elucidated. This study demonstrated Bacillus TGs are a candidate for protein crosslinking and provided their crosslinking mechanism at the protein level for applications in food processing.

7.
Plant Dis ; 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36366836

RESUMO

The variegated leaves and fragrant flowers of Daphne odora var. marginata Mak. make it a popular garden plant. In May 2020, we found diseased D. odora plants in a greenhouse at the Ganzhou Vegetable and Flower Research Institute, in southeast China; 72% of 1800 plants had Phytophthora blight-like symptoms-shrunken stems, black withered branches, wilted and dropped leaves (Fig 1a), and rotted and dark green roots. The root and stem tissue surfaces were disinfected with 75% ethanol for 30 s followed by 0.1% HgCl2 for 1 min, rinsed thrice with sterile water, and cultured on potato-dextrose agar (PDA) medium at 25°C. Mycelia from the diseased tissue were subcultured on fresh PDA medium, providing three colonies. White colonies (~4.1 mm) were formed after 10 days at 25°C (Fig 1b). Sporangia and chlamydospores were induced by placing actively growing mycelia on PDA medium at 25°C for ~30 days and then at 45°C for ~3 days. Sporangia were ovoid to spherical and 19.33 × 20.99 µm in size (Fig 1c), whereas chlamydospores were spherical and 15.68 × 16.10 µm in size (Fig 1d). All three colonies resembled Phytophthora spp. Genomic DNA was extracted from isolates using the Ezup Column Fungi Genomic DNA Purification Kit (Sangon Biotech [Shanghai] Co. Ltd.), and rDNA-ITS and ß-tubulin were amplified and sequenced. BLAST analysis (GenBank) revealed that the ITS (Accession No. MZ676071) and ß-tubulin (MZ748503) sequences of isolates shared the highest similarity (99-100%) with those of Phytophthora nicotianae (Duccio et al. 2015). A phylogenetic tree of the relationship between our isolate hjt3 and its close relatives within the P. nicotianae species was constructed using the MEGA X neighbor-joining method (Fig 2). The pathogen was identified as P. nicotianae based on morphological and molecular characteristics. Sequencing results of the three samples were consistent, all indicating P. nicotianae. A specimen (JXAU-H2020245) was deposited in the Herbarium of the College of Agronomy, Jiangxi Agricultural University. To confirm pathogenicity, 9-month-old healthy D. odora plants were used for stem and soil inoculation. Stems were cut ~5 cm from the soil with sterilized scalpels and inoculated with 0.8 cm diameter PDA plugs containing actively growing mycelia of isolate hjt3. The soil was sterilized and 0.8 cm PDA plugs containing actively growing mycelia were buried in the soil at ~5 cm; the mycelia were in contact with the roots. Plants in both groups were treated equally; those inoculated with sterile PDA plugs served as controls. There were six plants in each group, with each experiment performed in triplicate. All plants were incubated in a greenhouse at 25-28°C. The stems shrank and began to rot rapidly after 7 days (Fig 3) and the branches turned black and withered within 2 weeks. After soil inoculation, the stems of the inoculated plants blackened and rotted in ~20 days (Fig 4) and the roots rotted and turned dark green (Fig 5). These symptoms rapidly spread to the branches. The control plants did not exhibit any symptoms. Reisolated colonies showed the same morphological traits as the isolates used for inoculation; no target colonies were isolated from the control plants. Phytophthora blight caused by P. nicotianae on D. odora has been reported in Italy (Garibaldi A, 2009) and Korea (Kwon et al. 2005). This is the first detection in China. Therefore, Phytophthora blight on D. odora caused by P. nicotianae should be monitored and controlled to promote the development of the D. odora industry.

8.
Talanta ; 238(Pt 1): 122995, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34857328

RESUMO

A highly sensitive and specific ELISA-like chemiluminescence method for detection of fibrin has been developed. In the sensing platform, the homing peptide (CREKA), as recognition molecule, which can specially recognize the fibrin on microtiter plate, combined with G-quadruplex-based DNAzyme to form the probe of G-quadruplex-hemin DNAzyme-CREKA. After the sample solution was coated on the plates, the probe was crosslinked with fibrin through the interaction of CREKA and fibrin. Finally, luminol-H2O2 chemiluminesecence (CL) reaction was exploited for quantitative analysis of fibrin. The liner range for fibrin detection was from 0.112 pmol L-1 to 5.6 pmol L-1 with the detection limit of fibrin as low as 0.04 pmol L-1, based on a signal-to-noise ratio (S/N) of 3. Furthermore, on the basis of the high amplification efficiency of the rolling circle amplification (RCA) reaction, the method enabled to analyze fibrin with a detection limit corresponding to 0.06 fmol L-1, whose sensitivity increased 3 orders of magnitude than that of above method in the absence of RCA reaction. In particular, combined with the separation and washing steps of ELISA, the proposed method possessed higher selectivity, high-throughput and low cost, which shows promise for applications in clinical diagnosis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , DNA Catalítico/metabolismo , Ensaio de Imunoadsorção Enzimática , Fibrina , Hemina , Peróxido de Hidrogênio , Limite de Detecção , Peptídeos
9.
Nucleic Acids Res ; 50(D1): D183-D189, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850125

RESUMO

LncACTdb 3.0 is a comprehensive database of experimentally supported interactions among competing endogenous RNA (ceRNA) and the corresponding personalized networks contributing to precision medicine. LncACTdb 3.0 is freely available at http://bio-bigdata.hrbmu.edu.cn/LncACTdb or http://www.bio-bigdata.net/LncACTdb. We have updated the LncACTdb 3.0 database with several new features, including (i) 5669 experimentally validated ceRNA interactions across 25 species and 537 diseases/phenotypes through manual curation of published literature, (ii) personalized ceRNA interactions and networks for 16 228 patients from 62 datasets in TCGA and GEO, (iii) sub-cellular and extracellular vesicle locations of ceRNA manually curated from literature and data sources, (iv) more than 10 000 experimentally supported long noncoding RNA (lncRNA) biomarkers associated with tumor diagnosis and therapy, and (v) lncRNA/mRNA/miRNA expression profiles with clinical and pathological information of thousands of cancer patients. A panel of improved tools has been developed to explore the effects of ceRNA on individuals with specific pathological backgrounds. For example, a network tool provides a comprehensive view of lncRNA-related, patient-specific, and custom-designed ceRNA networks. LncACTdb 3.0 will provide novel insights for further studies of complex diseases at the individual level and will facilitate the development of precision medicine to treat such diseases.


Assuntos
Bases de Dados Genéticas , Medicina de Precisão , RNA/genética , Software , Biologia Computacional , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , RNA/classificação
10.
Front Cell Dev Biol ; 9: 702112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295900

RESUMO

Non-small cell lung cancer (NSCLC) is one of the most common malignancies worldwide. The development of high-throughput single-cell RNA-sequencing (RNA-seq) technology and the advent of multi-omics have provided a solid basis for a systematic understanding of the heterogeneity in cancers. Although numerous studies have revealed the molecular features of NSCLC, it is important to identify and validate the molecular biomarkers related to specific NSCLC phenotypes at single-cell resolution. In this study, we analyzed and validated single-cell RNA-seq data by integrating multi-level omics data to identify key metabolic features and prognostic biomarkers in NSCLC. High-throughput single-cell RNA-seq data, including 4887 cellular gene expression profiles from NSCLC tissues, were analyzed. After pre-processing, the cells were clustered into 12 clusters using the t-SNE clustering algorithm, and the cell types were defined according to the marker genes. Malignant epithelial cells exhibit individual differences in molecular features and intra-tissue metabolic heterogeneity. We found that oxidative phosphorylation (OXPHOS) and glycolytic pathway activity are major contributors to intra-tissue metabolic heterogeneity of malignant epithelial cells and T cells. Furthermore, we constructed T-cell differentiation trajectories and identified several key genes that regulate the cellular phenotype. By screening for genes associated with T-cell differentiation using the Lasso algorithm and Cox risk regression, we identified four prognostic marker genes for NSCLC. In summary, our study revealed metabolic features and prognostic markers of NSCLC at single-cell resolution, which provides novel findings on molecular biomarkers and signatures of cancers.

11.
Front Cell Dev Biol ; 9: 658346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079798

RESUMO

Competing endogenous RNAs (ceRNA) are transcripts that communicate with and co-regulate each other by competing for the binding of shared microRNAs (miRNAs). Long non-coding RNAs (lncRNAs) as a type of ceRNA constitute a competitive regulatory network determined by miRNA response elements (MREs). Mutations in lncRNA MREs destabilize their original regulatory pathways. Study of the effects of lncRNA somatic mutations on ceRNA mechanisms can clarify tumor mechanisms and contribute to the development of precision medicine. Here, we used somatic mutation profiles collected from TCGA to characterize the role of lncRNA somatic mutations in the ceRNA regulatory network in 33 cancers. The 31,560 mutation sites identified by TargetScan and miRanda affected the balance of 70,811 ceRNA regulatory pathways. Putative mutations were categorized as high or low based on mutation frequencies. Multivariate multiple regression revealed a significant effect of 162 high-frequency mutations in six cancer types on the expression levels of target mRNAs (ceMs) through the ceRNA mechanism. Low-frequency mutations in multiple cancers perturbing 1624 ceM have been verified by Student's t-test, indicating a significant mechanism of changes in the expression level of oncogenic genes. Oncogenic signaling pathway studies involving ceMs indicated functional heterogeneity of multiple cancers. Furthermore, we identified that lncRNA, perturbing ceMs associated with patient survival, have potential as biomarkers. Our collective findings revealed individual differences in somatic mutations perturbing ceM expression and impacting tumor heterogeneity.

12.
Front Oncol ; 11: 691310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113575

RESUMO

Thoracic malignancies are a common type of cancer and area major global health problem. These complex diseases, including lung cancer, esophageal cancer, and breast cancer, etc. have attracted considerable attention from researchers. Potential gene-cancer associations can be explored by demonstrating the association between clinical data and gene expression data. Emerging evidence suggests that the transcriptome plays a particularly critical role as a diagnostic biomarker in pathology and histology studies. Thus, there is an urgent need to develop a platform that allows users to perform a comprehensive prognostic analysis of thoracic cancers. Here, we developed TTSurv, which aims to correlate coding and noncoding genes with cancers by combining high-throughput data with clinical prognosis. TTSurv focuses on the application of high-throughput data to detect ncRNAs, such as lncRNAs and microRNAs, as novel diagnostic and prognostic biomarkers. For a more comprehensive analysis, a large amount of public expression profile data with clinical follow-up information have been integrated into TTSurv. TTSurv also provides flexible methods such as a minimum p-value algorithm and unsupervised clustering methods that can classify thoracic cancer samples into different risk groups. TTSurv will expand our understanding of ncRNAs in thoracic malignancies and provide new insights into their application as potential prognostic/diagnostic biomarkers.

13.
Luminescence ; 36(5): 1272-1276, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33837604

RESUMO

A simple, rapid and highly sensitive method for detection of double-stranded DNA (dsDNA) was developed using a novel fluorescence probe composed of a RecA-GFP fusion protein that had specific recognition of ssDNA complexes (RecA-GFP-DNA filament). The RecA-GFP fusion protein not only had strong fluorescence, but could also occur by homologous recombination. In the presence of the target dsDNA, the complementary ssDNA of the RecA-GFP-DNA filaments invaded one end of the dsDNA chain. In addition, the other end of the ssDNA dissociated the RecA-GFP filaments. An assay of the probe showed a linear relationship with dsDNA concentration in the range 1-11 nM, with a correlation coefficient of 0.9923. The limit of detection for dsDNA was determined experimentally to be 0.3 nM (3δ). Compared with conventional methods, this method has the advantages of simple operation, high specificity, and high sensitivity.


Assuntos
DNA de Cadeia Simples , Recombinases Rec A , DNA/genética , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
14.
J Sci Food Agric ; 101(10): 4154-4160, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33368295

RESUMO

BACKGROUND: Although Streptomyces mobaraense transglutaminase (MTG) has been extensively applied to enhance the functional characteristics of soy protein isolate (SPI) through cross-linking, various transglutaminases (TGs) in nature may provide more choice in the food industry. Previous research reported that TG derived from Bacillus subtilis (BTG) exhibited better pH stability and thermostability than MTG. RESULTS: An attempt was made to study the influence of BTG induced cross-linking on the properties of SPI. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results indicated that almost all protein constituents (α', α, ß, AS, and BS) in SPI could be cross-linked with BTG treatment. The BTG treatment also resulted in a significant increase (*P < 0.05) in SPI mean particle size. Emulsifying activity and stability were improved from 0.11535 m2  g-1 and 48.3% for native SPI to 0.13252 m2  g-1 and 83.9% for SPI treated with BTG at 6 h. Similarly, the modified SPI showed better foam activity (1.32 mL) and stability (87.6%) than the original SPI (0.93 mL and 56.8%). The water-holding capacity of SPI gel was found to increase with time, with a value of 95.43% at 6 h. Furthermore, SPI gel's texture profiles were greatly improved by adding BTG (*P < 0.05). CONCLUSION: The results of the present study indicated that BTG could be a promising cross-linking agent for improving the functional characteristics of SPI. As a substitute for MTG, BTG could thus potentially be used for food structure engineering to enhance the functional characteristics of multiple proteins to advance the development of food chemistry. © 2020 Society of Chemical Industry.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Soja/química , Transglutaminases/química , Bacillus subtilis/química , Biocatálise , Indústria de Processamento de Alimentos , Tamanho da Partícula
15.
Sci Total Environ ; 713: 136713, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019046

RESUMO

Laccases have a huge potential in numerous environmental and industrial applications due to the ability to oxidized a wide range of substrates. Here, a novel laccase gene from the identified Bacillus velezensis TCCC 111904 was heterologously expressed in Escherichia coli. The optimal temperature and pH for oxidation by recombinant laccase (rLac) were 80 °C and 5.5, respectively, in the case of the substrate 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and 80 °C and 7.0, respectively, in the case of 2,6-dimethoxyphenol (2,6-DMP). rLac exhibited high thermostability and pH stability over a wide range (pH 3.0, 7.0, and 9.0). Additionally, most of the metal ions did not inhibit the activity of rLac significantly. rLac showed great tolerance against high concentration of NaCl, and 50.8% of its initial activity remained in the reaction system containing 500 mM NaCl compared to the control. Moreover, rLac showed a high efficiency in decolorizing different types of dyes including azo, anthraquinonic, and triphenylmethane dyes at a high temperature (60 °C) and over an extensive pH range (pH 5.5, 7.0, and 9.0). These unique characteristics of rLac indicated that it could be a potential candidate for applications in treatment of dye effluents and other industrial processes.


Assuntos
Concentração de Íons de Hidrogênio , Bacillus , Clonagem Molecular , Corantes , Lacase , Temperatura
16.
Anal Chim Acta ; 1103: 67-74, 2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32081190

RESUMO

Two novel electrochemiluminescence (ECL) deoxyribosensors are designed for assay of early lung cancer biomarker (NAP2) using the DNA three-way junction (DNA-TWJ) inserted NAP2 binding aptamer between two double-helical stems and labeled with ruthenium (II) complex (Ru) (NBAT-Ru) taken as molecular recognition element. The signal-off ECL deoxyribosensor was fabricated by covalently coupling the 5'-NH2-(CH2)6-NBAT-Ru to glassy carbon electrode surface modified with 4-aminobenzoic acid (4-ABA). After combining NAP2 and NBAT-Ru, the changed conformation of NBAT-Ru altered the distance between Ru complex and electrode, resulting in a low ECL signal. The signal-on deoxyribosensor was fabricated by self-assembling the 5'-SH-(CH2)6-NBAT-Ru onto the Au electrode. The introduction of NAP2 triggered the conformational change in the aptamer domain, which induces the interhelical stacking of the two double-helical stems of NBAT-Ru. This stacking constitutes "electrical contact," which promotes transmission of electron-holes through the stems of NBAT-Ru, and produces high ECL intensity. Both deoxyribosensors show high sensitivity and selectivity. The biosensors have been successfully applied to clinical plasma detection. The approaches we describe represent unique principles based on DNA-TWJ inserted target special binding domain as molecular recognition element and different immobilization types for the fabrication of biosensors, which are greatly promising for the detection of protein, metal ions, bacteria, and cells.


Assuntos
Aptâmeros de Nucleotídeos/química , Biomarcadores Tumorais/sangue , Técnicas Biossensoriais/métodos , Neoplasias Pulmonares/diagnóstico , Proteínas Nucleares/sangue , Sequência de Bases , Biomarcadores Tumorais/química , Complexos de Coordenação/química , DNA de Cadeia Simples/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Medições Luminescentes , Proteínas Nucleares/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Rutênio/química
17.
Int J Biol Macromol ; 150: 982-990, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759024

RESUMO

As the copper-containing enzymes, laccases demonstrate a promising potential in various environmental and industrial applications. In this study, a bacterial strain isolated from soil exhibited the laccase activity, which was subsequently characterized and named as Bacillus amyloliquefaciens TCCC 111018. The novel gene encoding CotA-laccase (lac) was amplified using the genome of B. amyloliquefaciens TCCC 111018 as the template and efficiently and actively expressed in Escherichia coli. The recombinant LAC (rLAC) exhibited its highest activity at 80 °C and pH 5.5 for 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) oxidization and 80 °C and pH 7.0 for 2,6-dimethoxyphenol (2,6-DMP) oxidization. rLAC was stable at up to 60 °C and within the pH ranging from 3.0 to 9.0 when using the substrate ABTS. Furthermore, rLAC demonstrated the relatively high tolerance to NaCl, SDS, and most metal ions. Moreover, rLAC was capable of decolorizing the structurally different azo, anthraquinone, and triphenylmethane with different mediator at 60 °C under pH 5.5, 7.0, and 9.0. Therefore, rLAC would be an ideal candidate for lots of biotechnological and industrial applications due to its stability in the extreme conditions, including but not limit to pH, high temperature, halides, heavy metals and detergents.


Assuntos
Bacillus amyloliquefaciens/enzimologia , Lacase/química , Lacase/genética , Lacase/metabolismo , Bacillus amyloliquefaciens/classificação , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/isolamento & purificação , Proteínas de Bactérias , Clonagem Molecular , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Lacase/isolamento & purificação , Modelos Moleculares , RNA Ribossômico 16S/genética , Proteínas Recombinantes , Alinhamento de Sequência , Microbiologia do Solo , Especificidade por Substrato , Indústria Têxtil , Descoloração da Água
18.
Chem Commun (Camb) ; 55(91): 13733-13736, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31661100

RESUMO

The tough challenges for the convenient and quantitative determination of circulating miRNAs (cmiRNAs) in the peripheral blood are low abundance, high interference and lack of direct digital readout. Here, we developed dual-enhanced magnetobiosensors based on cascaded nucleic acid circuits, which integrate catalyzed hairpin assembly (CHA) with the hybridization chain reaction (HCR), for sensitive, portable and digital quantitative detection of circulating miRNAs in serum by a personal glucose meter (PGM).


Assuntos
Técnicas Biossensoriais/métodos , Campos Magnéticos , MicroRNAs/sangue , Ácidos Nucleicos/química , Glucose/química , Humanos , Hibridização de Ácido Nucleico
19.
Food Chem ; 295: 653-661, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174809

RESUMO

Although ß-xylosidases have a wide range of applications, cold-active ß-xylosidases have been poorly studied. In this study, a cold active ß-xylosidase gene (xyl) from Bacillus pumilus TCCC 11,350 was cloned and overexpressed in Escherichia coli. The recombinant XYL (rXYL) was revealed to be a bifunctional enzyme with both ß-xylosidase and α-l-arabinofuranosidase activities. Purified rXYL was most active at 30 °C, demonstrating 26% and 18% of its maximum activity at 4 °C and 0 °C, respectively. Meanwhile, rXYL showed a 52% activity in 200 mM xylose, indicating a relatively strong tolerance to xylose. Moreover, rXYL exhibited a high synergistic effect (11.14-fold and 16.21-fold) with endo-xylanase to degrade beechwood xylan in both sequential and simultaneous reactions at low temperatures. As the first report on the novel cold-adapted ß-xylosidase from B. pumilus, these results suggested rXYL had attractive properties for food industrial utilizations.


Assuntos
Bacillus pumilus/enzimologia , Xilosidases/metabolismo , Sequência de Aminoácidos , Ensaios Enzimáticos , Estabilidade Enzimática , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Filogenia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Temperatura , Xilanos/metabolismo , Xilose/metabolismo , Xilosidases/classificação , Xilosidases/genética
20.
Anal Chim Acta ; 1038: 120-125, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30278893

RESUMO

Telomerase is considered as a widely accepted cancer biomarker for early cancer diagnostics. Herein, we develop a simple, ultrahigh sensitivity method for detection of telomerase activity, which relied on that RecA-GFP fusion proteins wrapped around telomeric DNA to form fluorescence bouquets. RecA-GFP fusion protein was synthesized through fusion protein technology. In the presence of telomerase, telomerase elongation products are wrapped around by RecA-GFP fusion protein to form big fluorescent bouquets, which resulted in strong fluorescence. This method has the linear range from 50 to 1000 HeLa cells and the detection limit is 8 HeLa cells, based on a signal-to-noise ratio (S/N) of 3. Compared with conventional methods, this method has the advantages of low toxicity, outstanding sensitivity, and excellent selectivity. Hence, it provides a promising approach for the detection of telomerase activity and diagnosis of cancer.


Assuntos
Técnicas Biossensoriais , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Recombinases Rec A/metabolismo , Telomerase/metabolismo , Proteínas de Fluorescência Verde/química , Células HeLa , Humanos , Recombinases Rec A/química , Espectrometria de Fluorescência , Telomerase/análise , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...