Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytother Res ; 38(7): 3337-3351, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634416

RESUMO

The discovery of alternative medicines with fewer adverse effects is urgently needed for rheumatoid arthritis (RA). Sophoridine (SR), the naturally occurring quinolizidine alkaloid isolated from the leguminous sophora species, has been demonstrated to possess a wide range of pharmacological activities. However, the effect of SR on RA remains unknown. In this study, the collagen-induced arthritis (CIA) rat model and tumor necrosis factor alpha (TNFα)-induced fibroblast-like synoviocytes (FLSs) were utilized to investigate the inhibitory effect of SR on RA. The anti-arthritic effect of SR was evaluated using the CIA rat model in vivo and TNFα-stimulated FLSs in vitro. Mechanistically, potential therapeutic targets and pathways of SR in RA were analyzed through drug target databases and disease databases, and validation was carried out through immunofluorescence, immunohistochemistry, and Western blot. The in vivo results revealed that SR treatment effectively ameliorated synovial inflammation and bone erosion in rats with CIA. The in vitro studies showed that SR could significantly suppress the proliferation and migration in TNFα-induced arthritic FLSs. Mechanistically, SR treatment efficiently inhibited the activation of MAPKs (JNK and p38) and NF-κB pathways in TNFα-induced arthritic FLSs. These findings were further substantiated by Immunohistochemistry results in the CIA rat. SR exerts an anti-arthritic effect in CIA rats through inhibition of the pathogenic characteristic of arthritic FLSs via suppressing NF-κB and MAPKs (JNK and p38) signaling pathways. SR may have a great potential for development as a novel therapeutic agent for RA treatment.


Assuntos
Alcaloides , Artrite Experimental , Artrite Reumatoide , Fibroblastos , Matrinas , NF-kappa B , Quinolizinas , Sinoviócitos , Fator de Necrose Tumoral alfa , Animais , Sinoviócitos/efeitos dos fármacos , Artrite Experimental/tratamento farmacológico , Alcaloides/farmacologia , Ratos , Quinolizinas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Fibroblastos/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Masculino , Proliferação de Células/efeitos dos fármacos , Sophora/química , Ratos Sprague-Dawley
2.
Front Immunol ; 15: 1378202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650945

RESUMO

Interactions between macrophages and adipocytes in adipose tissue are critical for the regulation of energy metabolism and obesity. Macrophage polarization induced by cold or other stimulations can drive metabolic reprogramming of adipocytes, browning, and thermogenesis. Accordingly, investigating the roles of macrophages and adipocytes in the maintenance of energy homeostasis is critical for the development of novel therapeutic approaches specifically targeting macrophages in metabolic disorders such as obesity. Current review outlines macrophage polarization not only regulates the release of central nervous system and inflammatory factors, but controls mitochondrial function, and other factor that induce metabolic reprogramming of adipocytes and maintain energy homeostasis. We also emphasized on how the adipocytes conversely motivate the polarization of macrophage. Exploring the interactions between adipocytes and macrophages may provide new therapeutic strategies for the management of obesity-related metabolic diseases.


Assuntos
Adipócitos , Metabolismo Energético , Homeostase , Macrófagos , Obesidade , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Animais , Adipócitos/metabolismo , Obesidade/metabolismo , Obesidade/imunologia , Comunicação Celular , Termogênese
3.
Int Immunopharmacol ; 129: 111655, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340423

RESUMO

Wear particles generated from the surface of implanted prostheses can lead to peri-implant osteolysis and subsequent aseptic loosening. In the inflammatory environment, extensive formation and activation of osteoclasts are considered the underlying cause of peri-implant osteolysis. Current medications targeting osteoclasts for the treatment of particle-induced bone resorption are not ideal due to significant side effects. Therefore, there is an urgent need to develop more effective drugs with fewer side effects. Norcantharidin (NCTD), a derivative of cantharidin extracted from blister beetles, is currently primarily used for the treatment of solid tumors in clinical settings. However, the potential role of NCTD in treating aseptic loosening of the prosthesis has not been reported. In this study, the in vitro results demonstrated that NCTD could effectively inhibit the formation of osteoclasts and bone resorption induced by the RANKL. Consistently, NCTD strongly inhibited RANKL-induced mRNA and protein levels of c-Fos and NFATc1, concomitant with reduced expression of osteoclast specific genes including TRAP, CTR and CTSK. The in vivo data showed that NCTD exerted significant protective actions against titanium particle-induced inflammation and subsequent osteolysis. The molecular mechanism investigation revealed that NCTD could suppress the activations of RANKL-induced MAPK (p38, ERK). Overall, these findings support the potential use of NCTD for the treatment of aseptic loosening following total joint arthroplasty.


Assuntos
Reabsorção Óssea , Compostos Bicíclicos Heterocíclicos com Pontes , Osteólise , Animais , Camundongos , Osteoclastos , Osteólise/induzido quimicamente , Osteólise/tratamento farmacológico , Osteólise/metabolismo , Titânio/efeitos adversos , NF-kappa B/metabolismo , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Ligante RANK/metabolismo , Osteogênese , Camundongos Endogâmicos C57BL
4.
Plant Physiol Biochem ; 204: 108147, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37922646

RESUMO

In maize, nitrogen (N) stored in leaves is an important internal source for supporting subsequent growth and development. However, the regulation of N fluxes and photosynthesis and the molecular and genotypic regulations that modify them are less clear in source leaves during the vegetative stage. This knowledge is crucial for improving N use efficiency (NUE). By using 15N labeling and transcriptome methods, an analysis of the physiological and molecular basis of leaf N import and export processes and photosynthetic N use efficiency (PNUE) was conducted in two maize hybrids (XY335 and XY696) with different stay-green characteristics during the vegetative stage. Leaf N import and export in XY696 were 45% and 33% greater than those in XY335. However, the PNUE in XY335 was 17% greater than that in XY696 due to the higher net photosynthetic rate (A) and lower SLN. Correspondingly, the chlorophyll content and photosynthesis-related enzyme (PEPc, PEPck, PPDK) activities increased by 18∼30% in XY335. Transcriptome analysis indicated that the expression levels of several N and carbon metabolism-related genes encoding Rubisco, PEPc, Nir, GS and AS were significantly increased or decreased in XY696 in parallel with enzyme activities. Moreover, there was a large difference in the expression abundance of genes encoding nitrate/nitrite transporters and transmembrane proteins. Our results suggest that two hybrids modulate leaf N fluxes and photosynthesis differently by altering gene expression and enzyme activities. Our study contributes to understanding leaf N fluxes and PNUE regulation and serves as a crucial reference for NUE improvement in maize breeding research.


Assuntos
Nitrogênio , Zea mays , Zea mays/metabolismo , Nitrogênio/metabolismo , Melhoramento Vegetal , Fotossíntese/genética , Perfilação da Expressão Gênica , Folhas de Planta/genética , Folhas de Planta/metabolismo
5.
Front Plant Sci ; 14: 1119749, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959929

RESUMO

Introduction: The formation of color in plants is significantly dependent on anthocyaninpigments. Grape species vary in color due to the differences in anthocyanin accumulation. It is widely recognized that both biotic and abiotic conditions may have an impact on anthocyanin synthesis in plants. The underlying molecular mechanisms by which external application of hyperoside impacts anthocyanin formation in grapes, however, have received little attention. Methods: In the current study,the transcriptome of Gemstone seedless grape was examined using high-throughput RNA sequencing at various developmental stages reply to both control and hyperoside treatments. Results: The results of this study suggested that the major genes controlling anthocyanin accumulation in response to the externalinjection of hyperoside could be VvMYB62, VvPAL, VvCHS, and VvF3'5'H.Quantitative reverse transcription PCR (RT-qPCR) results were used to confirm the changes in the expression levels of the genes encoding the anthocyanin biosynthesis pathway under the control and hyperoside treatments. Using a transient transformation system, it was discovered that VvMYB62 was shown to regulate the anthocyanin accumulation at both the transcriptional and posttranslational levels and could be influenced by the external administration of hyperoside. In grape embryogenic calli, hyperoside could specifically suppress theexpression of VvMYB62 and anthocyanin accumulation. In this instance, the VvMYB62 characterisation brought attention to the significance of exogenous hyperoside-induced anthocyanin accumulation. Therefore, the results demonstrated that VvMYB62 could be hindered in the process of grape during anthocyanin accumulation caused by hyperoside. Discussion: These findings offer excellent candidate genes in the future breeding of novel grape varieties in addition to serving as a crucial reference for understanding the underlying molecular processes of hyperoside suppression of anthocyanin formation in plants.

6.
J Org Chem ; 87(23): 16099-16105, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36377651

RESUMO

A copper(II)-promoted denitrogenation/oxidation reaction for the preparation of primary α-ketoamides was developed using α-azido ketones as a substrate and TEMPO as an oxidant. α-Azido ketones were denitrogenated in situ to form an imino ketone intermediate, which underwent a radical addition process and radical migration to form α-ketoamides. It is worth noting that the imino ketone intermediate is the key to this reaction.

7.
Int Immunopharmacol ; 111: 109181, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36027853

RESUMO

BACKGROUND AND PURPOSE: Peimine (PM), a main isosterol alkaloid component isolated from the bulbs of traditional Chinese herb Fritillaria cirrhosa D. Don, has been demonstrated to exhibit multiple pharmacological properties, including anti-inflammation, anti-cancer and pain suppression. However, its effect on rheumatoid arthritis (RA) remains unknown. In the present study, we investigated the effect of PM on collagen-induced arthritis (CIA) rats in vivo and its inhibition on destructive behaviors of arthritic fibroblast-like synoviocytes (FLSs) in vitro. METHODS: Arthritis was induced in rats by chicken type II collagen. Arthritis score, radiological evaluation, and histopathological assessment were used to evaluate the therapeutic effects of PM on CIA rats. EdU assay, wound healing assay and real-time PCR were used to examine the inhibitory effect of PM on proliferation, migration, and over-expression of pro-inflammatory cytokines in TNFα-induced arthritic FLSs. TRAP staining and scanning electron microscopy were used to analyze the effect of PM on osteoclastogensis and bone resorption. Western blot was used to reveal PM's molecular mechanism of action on RA. RESULTS: PM significantly suppressed synovitis and bone destruction in CIA rats. In vitro experiments showed that PM treatment significantly inhibited TNFα-induced destructive behaviors of arthritic FLSs, including over-proliferation, migration and over-expression of pro-inflammatory cytokines. Additionally, RANKL-induced osteoclast formation and bone-resorpting function were also inhibited by PM. Further molecular mechanism studies revealed that PM treatment significantly suppressed TNFα-induced activations of MAPKs (ERK, JNK and p38) in arthritic FLSs. CONCLUSION: Our findings provide strong evidence that PM has the potential to be developed as a therapeutic agent for patients with RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Sinoviócitos , Animais , Artrite Experimental/patologia , Artrite Reumatoide/metabolismo , Proliferação de Células , Células Cultivadas , Cevanas , Citocinas/metabolismo , Fibroblastos , Ratos , Fator de Necrose Tumoral alfa/metabolismo
8.
Food Funct ; 13(12): 6702-6715, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35660845

RESUMO

Food allergy has been one of the main problems threatening people's health in recent years. However, there is still no way to completely cure it at present. Therefore, the development of food allergy related drugs is still necessary. Sargassum graminifolium (SG) is a kind of polysaccharide rich marine brown alga used in food and medicine. Sargassum graminifolium polysaccharides (SGP) is mainly composed of fucoidans and alginic acid. In our study, we compared the activity of fucoidans and alginates from SG against OVA-induced food allergy in a mouse model, observed the regulatory effects of fucoidans and alginates from SG on the intestinal microbiota and summarized the possible role of the intestinal microbiota in the anti-food allergy process because polysaccharides can further act on the body through the intestinal microbiota. The results showed that fucoidans and alginates from SG could relieve the symptoms of allergy, diarrhea and jejunum injury significantly in mice with food allergy (p < 0.05). Furthermore, fucoidans at 500 mg kg-1 could reduce OVA-specific IgE and TNF-α levels significantly in the serum of food allergic mice (p < 0.05), while alginates could only significantly down-regulate serum OVA-specific IgE (p < 0.05). The results also showed that fucoidans had a stronger regulatory effect on the richness and diversity of the intestinal microbiota in food allergic mice compared to alginates at the same dose. In addition, fucoidans at 500 mg kg-1 had the most significant regulatory effect on Firmicutes, Lactobacillus and Alistipes in food allergic mice. These results suggested that fucoidans and alginates might regulate food allergy in mice through different pathways. Together, this study enriched the research on the action of alga-derived polysaccharides against food allergy.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Sargassum , Alginatos , Alérgenos , Animais , Hipersensibilidade Alimentar/metabolismo , Humanos , Imunoglobulina E , Camundongos , Ovalbumina , Polissacarídeos/farmacologia
9.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35270008

RESUMO

Wear particle-induced aseptic loosening is the most common complication of total joint arthroplasty (TJA). Excessive osteoclast formation and bone resorptive activation have been considered to be responsible for extensive bone destruction and prosthesis failure. Therefore, identification of anti-osteoclastogenesis agents is a potential therapy strategy for the treatment of aseptic loosening and other osteoclast-related osteolysis diseases. In the present study, we reported, for the first time, that piperlongumine (PL), a key alkaloid compound from Piper longum fruits, could significantly suppress the formation and activation of osteoclasts. Furthermore, PL effectively decreased the mRNA expressions of osteoclastic marker genes such as tartrate-resistant acid phosphatase (TRAP), calcitonin receptor (CTR), and cathepsin K (CTSK). In addition, PL suppressed the receptor activator of nuclear factor-κB ligand (RANKL)-induced activations of MAPKs (ERK, JNK and p38) and NF-κB, which down-regulated the protein expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). Using a titanium (Ti) particle-induced calvarial osteolysis model, we demonstrated that PL could ameliorate Ti particle-induced bone loss in vivo. These data provide strong evidence that PL has the potential to treat osteoclast-related diseases including periprosthetic osteolysis (PPO) and aseptic loosening.


Assuntos
Reabsorção Óssea , Osteólise , Animais , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Dioxolanos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteogênese , Osteólise/induzido quimicamente , Osteólise/tratamento farmacológico , Osteólise/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Transdução de Sinais , Titânio/farmacologia
10.
Membranes (Basel) ; 11(12)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34940494

RESUMO

Nanoparticle (NP)-cell interaction mediated by receptor-ligand bonds is a crucial phenomenon in pathology, cellular immunity, and drug delivery systems, and relies strongly on the shape of NPs and the stiffness of the cell. Given this significance, a fundamental question is raised on how the ligand distribution may affect the membrane wrapping of non-spherical NPs under the influence of cytoskeleton deformation. To address this issue, in this work we use a coupled elasticity-diffusion model to systematically investigate the role of ligand distribution in the cytoskeleton-associated endocytosis of ellipsoidal NPs for different NP shapes, sizes, cytoskeleton stiffness, and the initial receptor densities. In this model, we have taken into account the effects of receptor diffusion, receptor-ligand binding, cytoskeleton and membrane deformations, and changes in the configuration entropy of receptors. By solving this model, we find that the uptake process can be significantly influenced by the ligand distribution. Additionally, there exists an optimal state of such a distribution, which corresponds to the fastest uptake efficiency and depends on the NP aspect ratio and cytoskeleton stiffness. We also find that the optimal distribution usually needs local ligand density to be sufficiently high at the large curvature region. Furthermore, the optimal state of NP entry into cells can tolerate slight changes to the corresponding optimal distribution of the ligands. The tolerance to such a change is enhanced as the average receptor density and NP size increase. These results may provide guidelines to control NP-cell interactions and improve the efficiency of target drug delivery systems.

11.
Phys Rev E ; 104(5-1): 054405, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942735

RESUMO

The bioactivity of nanoparticles (NPs) crucially depends on their ability to cross biological membranes. A fundamental understanding of cell-NP interaction is hence essential to improve the performance of the NP-based biomedical applications. Although extensive studies of cellular uptake have converged upon the idea that the uptake process is mainly regulated by the elastic deformation of the cell membrane or NP, recent experimental observations indicate the ligand density as another critical factor in modulating NP uptake into cells. In this study, we propose a theoretical model of the wrapping of an elastic vesicle NP by a finite lipid membrane to depict the relevant energetic and morphological evolutions during the wrapping process driven by forming receptor-ligand bonds. In this model, the deformations of the membrane and the vesicle NP are assumed to follow the continuum Canham-Helfrich framework, whereas the change of configurational entropy of receptors is described from statistical thermodynamics. Results show that the ligand density strongly affects the binding energy and configurational entropy of free receptors, thereby altering the morphology of the vesicle-membrane system in the steady wrapping state. For the wrapping process by the finite lipid membrane, we also find that there exists optimal ligand density for the maximum wrapping degree. These predictions are consistent with relevant experimental observations reported in the literature. We have further observed that there are transitions of various wrapping phases (no wrapping, partial wrapping, and full wrapping) in terms of ligand density, membrane tension, and molecular binding energy. In particular, the ligand and receptor shortage regimes for the small and high ligand density are, respectively, identified. These results may provide guidelines for the rational design of nanocarriers for drug delivery.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33868442

RESUMO

BACKGROUND: Dahuang Zhechong pills (DHZCP) is a classic Chinese medicinal prescription in "Treatise on Cold Pathogenic and Miscellaneous Diseases (Shanghan Zabing Lun)," and it has the function of tonifying blood, nourishing Yin, and removing blood stasis. Previous studies have shown that DHZCP could alleviate SiO2 induced pulmonary fibrosis in mice. This study aims to further explore the preventive and therapeutic effects of DHZCP against silicosis fibrosis and the underlying mechanisms in vitro. METHODS: We used the experimental model of SiO2-induced MH-S cells to evaluate the therapeutic potential of DHZCP. MH-S cells induced by SiO2 were intervened with the drug-containing serum of DHZCP, and the effects of drug-containing serum of DHZCP on the MH-S cells were detected by CCK8, ELISA, flow cytometry, western blot, and immunofluorescence. RESULTS: DHZCP improved cell viability by reducing apoptosis. It also decreased the levels of TNF-α, IL-1ß, IL-6 in the supernatant of MH-S cells induced by SiO2, inhibited the expression of p38 MAPK, blocked the activation of NF-κB, and controlled the upstream inflammatory response by multiple targeting. Concomitantly, we observed upregulation of Smad7 and a marked decline in TGF-ß1, α-SMA, Smad2, Smad3 expression in MH-S cells treated with DHZCP. CONCLUSION: To sum up, we conclude that DHZCP protects against SiO2-induced silicosis by reducing the persistent irritation of inflammation, regulating the p38 MAPK/TGF-ß1/Smad pathway.

13.
R Soc Open Sci ; 4(5): 170063, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28573012

RESUMO

Biophysical-factor-dependent cellular uptake of nanoparticles (NPs) through receptor-diffusion-mediated endocytosis bears significance in pathology, cellular immunity and drug-delivery systems. Advanced nanotechnology of NP synthesis provides methods for modifying NP surface with different ligand distributions. However, no report discusses effects of ligand distribution on NP surface on receptor-diffusion-mediated cellular uptake. In this article, we used a statistical dynamics model of receptor-diffusion-mediated endocytosis to examine ligand-distribution-dependent cellular uptake dynamics by considering that ligand-receptor complexes drive engulfing to overcome resistance to membrane deformation and changes in configuration entropy of receptors. Results showed that cellular internalization of NPs strongly depended on ligand distribution and that cellular-uptake efficiency of NPs was high when ligand distribution was within a range around uniform distribution. This feature of endocytosis ensures robust infection ability of viruses to enter host cells. Interestingly, results also indicated that optimal ligand distribution associated with highest cellular-uptake efficiency slightly depends on distribution pattern of ligands and density of receptors, and the optimal distribution becomes uniform when receptor density is sufficiently large. Position of initial contact point is also a factor affecting dynamic wrapping. This study explains why most enveloped viruses present almost homogeneous ligand distribution and is useful in designing controlled-release drug-delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...