Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38955498

RESUMO

The development and maturation of follicles is a sophisticated and multistage process. The dynamic gene expression of oocytes and their surrounding somatic cells and the dialogs between these cells are critical to this process. In this study, we accurately classified the oocyte and follicle development into nine stages and profiled the gene expression of mouse oocytes and their surrounding granulosa cells and cumulus cells. The clustering of the transcriptomes showed the trajectories of two distinct development courses of oocytes and their surrounding somatic cells. Gene expression changes precipitously increased at Type 4 stage and drastically dropped afterward within both oocytes and granulosa cells. Moreover, the number of differentially expressed genes between oocytes and granulosa cells dramatically increased at Type 4 stage, most of which persistently passed on to the later stages. Strikingly, cell communications within and between oocytes and granulosa cells became active from Type 4 stage onward. Cell dialogs connected oocytes and granulosa cells in both unidirectional and bidirectional manners. TGFB2/3, TGFBR2/3, INHBA/B, and ACVR1/1B/2B of TGF-ß signaling pathway functioned in the follicle development. NOTCH signaling pathway regulated the development of granulosa cells. Additionally, many maternally DNA methylation- or H3K27me3-imprinted genes remained active in granulosa cells but silent in oocytes during oogenesis. Collectively, Type 4 stage is the key turning point when significant transcription changes diverge the fate of oocytes and granulosa cells, and the cell dialogs become active to assure follicle development. These findings shed new insights on the transcriptome dynamics and cell dialogs facilitating the development and maturation of oocytes and follicles.


Assuntos
Células da Granulosa , Oócitos , Folículo Ovariano , Transcriptoma , Animais , Feminino , Oócitos/metabolismo , Oócitos/crescimento & desenvolvimento , Oócitos/citologia , Camundongos , Células da Granulosa/metabolismo , Células da Granulosa/citologia , Transcriptoma/genética , Folículo Ovariano/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/citologia , Comunicação Celular/genética , Transdução de Sinais/genética , Perfilação da Expressão Gênica/métodos , Metilação de DNA/genética , Oogênese/genética
2.
Foods ; 13(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38998577

RESUMO

To improve product quality and obtain suitable processing parameters for crab apple slices (CASs) produced by continuous microwave drying (CMD), the effects of processing parameters, including slice thickness, microwave power, air velocity, and conveyor belt speed, on the evaluation indexes in terms of temperature, moisture content, color (L*, a*, b*), hardness, brittleness, and total phenolic content of CASs were investigated via the response surface method. The results indicated that microwave power has the greatest effect on the evaluation indexes applied to the CASs under CMD, followed by air velocity, slice thickness, and conveyor belt speed. To produce the desired product quality, the appropriate parameters for CMD of CASs were optimized as 1.25 mm slice thickness, 14,630 W microwave power, 0.50 m·s-1 air velocity, and 0.33 m·min-1 conveyor belt speed. Following that, the moisture content under CMD was found to be 13.53%, the desired color, hardness 0.79 g, brittleness 12.97 (number of peaks), and the total phenolic content 5.48 mg·g-1. This research provides a theoretical framework for optimizing the processing parameters of CASs using the response surface method.

3.
Bioelectrochemistry ; 160: 108778, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39003948

RESUMO

Three-dimensional (3D) network provide a promising platform for construction of high sensitive electrochemical immunosensor due to the benefits of high specific surface area and electron mobility. Herein, a sensitive label-free electrochemical immunosensor based on Au nanoparticles modified Ni-B nanosheets/graphene matrix was constructed to detect diethylstilbestrol (DES). The 3D network not only could increase the electron transport rate and surface area, but also could provide confinement area, which is conducive to increases the collision frequency with the active site. Moreover, Au NPs also have good biocompatibility, which is beneficial for ligating antibodies. Benefiting from the 3D network structure and Au collective effect, the electrochemical immunosensor possess sterling detection ability with wide linear response range (0.00038-150 ng/mL) and low detection limit (31.62 fg/mL). Moreover, the constructed immunosensor can also be extend to detect DES in Tap-water and river water. This work may provide a novel material model for the construction of high sensitive immunosensor.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38954340

RESUMO

Solanum lycopersicum L. can be classified into low Cd-accumulating and high Cd-accumulating types based on their accumulation characteristics of cadmium (Cd). There are many common S. lycopersicum varieties available in the market, but their specific Cd tolerance and enrichment abilities are not well understood. This article uses two S. lycopersicum cultivars, Yellow Cherry and Yellow Pearl, as experimental materials. The experimental method of soil pot planting was adopted, and Cd concentrations in the soil were added at 0, 0.6, 1.5, 2.5, 5, and 10 mg/kg. The changes in Cd content, biomass, photosynthetic pigment content, and photosynthetic parameters of the two S. lycopersicum cultivars were analyzed to screen for low-accumulation S. lycopersicum cultivars. The results showed that S. lycopersicum are Cd-sensitive plants. The Cd accumulation, photosynthetic parameters, and other basic indicators of Yellow Cherry basically showed significant differences when the soil Cd concentration was 0.6 mg/kg, and the biomass showed significant differences when the soil Cd concentration was 1.5 mg/kg. Except for the Cd accumulation in the roots and leaves of Yellow Pearl, which showed significant differences at a soil Cd concentration of 0.6 mg/kg, the other indicators basically showed significant differences when the soil Cd concentration was 1.5 mg/kg. When the soil Cd concentration was 0.6 mg/kg, the Cd accumulation in the fruit of Yellow Pearl was 0.04 mg/kg, making it a low-accumulation S. lycopersicum variety suitable for promoting cultivation in Cd-contaminated soil at 0.6 mg/kg. In conclusion, the Cd accumulation in the fruit of Yellow Pearl is significantly lower than that of Yellow Cherry and even below the Cd limit value for fresh vegetables specified in GB2762-2017. Therefore, Yellow Pearl can be grown as edible crops in soils with Cd concentrations ≤0.6 mg/kg. Furthermore, Yellow Cherry demonstrate strong Cd tolerance and can be used for the remediation of Cd-contaminated soils.

5.
J Immunother ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980111

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is associated with high morbidity and mortality rates. The aims of this study were to investigate the immune-promoting action of nucleolar and spindle-associated protein 1 (NUSAP1) and identify an immunotherapy target for HCC. The Cancer Genome Atlas (TCGA) was used to analyze interaction molecules and immune correlation. The interaction between NUSAP1 and SHC binding and spindle associated 1 (SHCBP1) was examined. The role of the SHCBP1/Janus kinase 2/signal transducer and activator of transcription 3 (SHCBP1/JAK2/STAT3) pathway in this process was explored. After co-culture with HCC cell lines, the differentiation of peripheral blood mononuclear cells (PBMCs) into dendritic cells (DC) was evaluated by measuring the expression of surface factors CD1a and CD86. Pathological tissues from 50 patients with HCC were collected to validate the results of cell experiments. The expression levels of CD1a and CD86 in tissues were also determined. The results show that NUSAP1 interacted with SHCBP1 and was positively correlated with DC. In HCC cell lines, an interaction was observed between NUSAP1 and SHCBP1. It was verified that NUSAP1 inhibited the JAK2/STAT3 phosphorylation pathway by blocking SHCBP1. After co-culture, the levels of CD1a and CD86 in PBMC were elevated. In the clinical specimens, CD1a and CD86 expression levels were significantly higher in the high-NUSAP1 group versus the low-NUSAP1 group. In Summary, NUSAP1 enhanced immunity by inhibiting the SHCBP1/JAK2/STAT3 phosphorylation pathway and promoted DC generation and HCC apoptosis. NUSAP1 may be a target of immunotherapy for HCC.

6.
Fish Shellfish Immunol ; 151: 109741, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964436

RESUMO

Decay-accelerating factor (DAF) is an essential member of the complement regulatory protein family that plays an important role in immune response and host homeostasis in mammals. However, the immune function of DAF has not been well characterized in bony fish. In this study, a complement regulatory protein named CiDAF was firstly characterized from Ctenopharyngodon idella and its potential roles were investigated in intestine following bacterial infection. Similar to mammalian DAFs, CiDAF has multiple complement control protein (CCP) functional domains, suggesting the evolutionary conservation of DAFs. CiDAF was broadly expressed in all tested tissues, with a relatively high expression level detected in the spleen and kidney. In vivo immune challenge experiments revealed that CiDAF strongly responded to bacterial pathogens (Aeromonas hydrophila and Aeromonas veronii) and PAMPs (lipopolysaccharide (LPS) or muramyl dipeptide (MDP)) challenges. In vitro RNAi experiments indicated that knockdown of CiDAF could upregulate the expression of complement genes (C4b, C5 and C7) and inflammatory cytokines (TNF-α, IL-1ß and IL-8). Moreover, 2000 ng/mL of CiDAF agonist progesterone effectively alleviated LPS- or MDP-induced intestinal inflammation by regulating expression of complement factors, TLR/PepT1 pathway genes and inflammatory cytokines. Overall, these findings revealed that CiDAF may act as a negative regulator of intestinal complement pathway and immune response to bacterial challenge in grass carp.

7.
Thromb Haemost ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959956

RESUMO

BACKGROUND: Sepsis-induced coagulopathy (SIC) is a common cause of poor prognosis in critically ill patients in the intensive care unit (ICU). This study aimed to develop a predictive nomogram incorporating clinical markers and scoring systems to individually predict the probability of SIC in septic patients. METHODS: Patients consecutively recruited in the stage between January 2022 and April 2023 constituted the development cohort for retrospective analysis to internally test the nomogram, and patients in the stage between May 2023 to November 2023 constituted the validation cohort for prospective analysis to external validate the nomogram. The nomogram was validated in an independent external validation cohort, involving discrimination and calibration. A decision curve analysis was also performed to evaluate the net benefit of the insertion decision with this nomogram. RESULTS: A total of 548 and 245 patients were included in the development and validation cohort, respectively. Predictors contained in the prediction nomogram included shock, platelets and INR. Patients with shock (OR, 4.499; 95% CI, 2.730-7.414; P < 0.001) , higher INR (OR, 349.384; 95% CI, 62.337-1958.221; P < 0.001) and lower platelet (OR, 0.985; 95% CI, 0.982-0.988; P < 0.001) had higher probabilities of SIC. The development model showed good discrimination, with an AUROC of 0.879(95%CI, 0.850-0.908)and good calibration. Application of the nomogram in the validation cohort also gave good discrimination with an AUROC of 0.872(95%CI,0.826-0.917)and good calibration. CONCLUSIONS: By incorporating shock, platelets and INR in the model, this useful nomogram could be accessibly utilized to predict SIC occurrence in septic patients.

8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 377-384, 2024 Mar 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38970511

RESUMO

Secondary nephrosis is a series of chronic kidney diseases secondary to other underlying diseases, mainly manifesting as structural and functional abnormalities of the kidneys and metabolic disorders. It is one of the important causes of end-stage renal disease, with high morbidity and significant harm. Iron is an essential metal element in human cells, and ferroptosis is a non-traditional form of iron-dependent cell death, and its main mechanisms include iron accumulation, lipid metabolism disorders, abnormal amino acid metabolism, and damage to the antioxidant system. Recently studies have found that ferroptosis is involved in the occurrence and progression of secondary nephrosis, and the mechanism of ferroptosis in different secondary nephrosis vary. Therefore, an in-depth and systematic understanding of the association between ferroptosis and secondary nephrosis, as well as their specific regulatory mechanisms, can provide a theoretical basis for the diagnosis, prevention, treatment, and prognosis assessment of secondary nephrosis, laying the foundation for exploring new clinical therapeutic targets for secondary nephrosis.


Assuntos
Ferroptose , Ferro , Nefrose , Humanos , Ferroptose/fisiologia , Ferro/metabolismo , Nefrose/metabolismo , Animais , Falência Renal Crônica/complicações , Metabolismo dos Lipídeos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38970169

RESUMO

The coarctation of the aorta (CoA) combined with heart defects or cerebral artery aneurysms is more prevalent in clinical practice. However, cases of concurrent bilateral iliac artery dissection (IAD) are extremely rare and have not been reported. Here, we described a case with CoA combined with bilateral IAD. The patient, a 62-year-old male, presented with acute intermittent claudication accompanied by pain and aching in both lower limbs after walking. Following a thorough medical history inquiry and examination, the patient was diagnosed with acute bilateral IAD combined with CoA. The patient underwent endovascular treatment. Postoperatively, the aortic diameter recovered, and the bilateral IAD disappeared, yielding satisfactory therapeutic results. Conclusively, endovascular treatment of aortic coarctation combined with IAD is an effective therapeutic approach, enhancing patient survival and improving their quality of life.

11.
Redox Biol ; 75: 103178, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38986245

RESUMO

To this date, COVID-19 remains an unresolved pandemic, and the impairment of redox homeostasis dictates the severity of clinical outcomes. Here we examined initial UCLA cohort of 440 COVID-19 patients hospitalized between March 1st and April 1st, 2020, representing the first wave of the pandemic. The mean age was 58.88 ± 21.12, among which males were significantly more than females (55.5 % vs. 44.5 %), most distinctively in age group of 50-69. The age groups of 50-69 (33.6 %) and ≥70 (34.8 %) dominated. The racial composition was in general agreement with Census data with slight under-representation of Hispanics and Asians, and over-representation of Caucasians. Smoking was a significant factor (28.8 % vs. 11.0 % in LA population), likewise for obesity (BMI ≥30) (37.4 % vs. 27.7 % in LA population). Patients suffering from obesity or BMI<18.5 checked into ICU at a significantly higher rate. A 74.5 % of the patients had comorbidities including diabetes, chronic kidney disease, chronic pulmonary disease, congestive heart failure and peripheral vascular disease. The levels of d-dimer were drastically upregulated (1159.5 ng/mL), indicating hypercoagulative state. Upregulated LDH (328 IU/L) indicated significant tissue damages. A distorted redox hemeostasis is a common trait associated with these risk factors and clinical markers. A quarter of the patients received antivirals, among which Remdesivir most prescribed (23.6 %). Majority received antithrombotics (75 %), and antibiotics. Upon admission, 67 patients were intubated or received CPR; 177 patients eventually received intensive care (40.2 %). While 290 were discharged alive, 10 remained hospitalized, 73 were transferred, and 36 died with 3 palliatively discharged. In summary, our data fully characterized a Californian cohort of COVID-19 at the breaking phase of the pandemic, indicating that population demographics, biophysical characters, comorbidities and molecular pathological parameters have significant impacts on the evolvement of a pandemic. These provide critical insights into effective management of COVID-19, and future break from another pathogen.

12.
Focus (Am Psychiatr Publ) ; 22(3): 388-399, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988470

RESUMO

Objective: The main purpose was to evaluate the efficacy and tolerability of different medications used to treat bulimia nervosa (BN). Methods: Randomized controlled trials (RCTs) were identified from published sources through searches in PubMed, Cochrane Library, Web of Science, and Embase from inception to November 2022. Primary outcomes were changes in the frequency of binge eating episodes and vomiting episodes from baseline to endpoint. Secondary outcomes were differences in the improvement of scores in depressive symptoms, tolerability (dropout due to adverse events) and weight change. Results: The literature search ultimately included 11 drugs, 33 studies and 6 types of drugs, 8 trials with TCAs (imipra-mine, desipramine), 14 with SSRIs (fluoxetine, citalopram and fluvoxamine), 6 with MAOIs (phenelzine, moclobemide and brofaromine), 3 with antiepileptic drugs (topiramate), 1 with mood stabilizers (lithium), and 1 with amphetamine-type appetite suppressant (fenfluramine). The reduction in binge eating episodes was more likely due to these drugs than the placebo, and the SMD was -0.4 (95% CI -0.61 ∼ -0.19); the changes in the frequency of vomiting episodes (SMD = -0.16, 95% CI -0.3 ∼ -0.03); weight (WMD = -3.05, 95% CI -5.97 ∼ -0.13); and depressive symptoms (SMD =-0.32, 95% CI -0.51 ∼ -0.13). However, no significant difference was found in dropout due to adverse events (RR = 1.66, 95% CI 1.14 ∼ 2.41). Conclusions: This meta-analysis indicates that most pharmacotherapies decreased the frequency of binge-eating and vomiting episodes, body weight, and depressive symptoms in BN patients, but the efficacy was not significant. In each drug the efficacy is different, treating different aspects, different symptoms to improve the clinical performance of bulimia nervosa.Appeared originally in BMC Pharmacol Toxicol 2023; 24:72.

13.
ChemSusChem ; : e202400856, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894517

RESUMO

Chemical looping reforming of methane (CLRM) with Fe-based oxygen carriers is widely acknowledged as an environmentally friendly and cost-effective approach for syngas production, however, sintering-caused deactivate of oxygen carriers at elevated temperatures of above 900 °C is a longstanding issue restricting the development of CLRM. Here, in order to reduce the reaction temperature without compromising the chemical-looping CH4 conversion efficiency, we proposed a novel operation scheme of CLRM by manipulating the reaction pressure to shift the equilibrium of CH4 partial oxidation towards the forward direction based on the Le Chatelier's principle. The results from thermodynamic simulations showed that, at a fixed reaction temperature, the reduction in pressure led to the increase in CH4 conversion, H2 and CO selectivity, as well as carbon deposition rate of all investigated oxygen carriers. The pressure-negative CLRM with Fe3O4, Fe2O3 and MgFe2O4 could reduce the reaction temperature to below 700 ℃ on the premise of a satisfactory CLRM performance. In a comprehensive consideration of the CLRM performance, energy consumption, and CH4 requirement, NiFe2O4 was the Fe-based OCs best available for pressure-negative CLRM. This study offered a new strategy to address sintering-caused deactivation of materials in chemical looping from the reaction thermodynamics point of view.

14.
Adv Sci (Weinh) ; : e2402610, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887865

RESUMO

Here, an approach to produce a hierarchical porous Fe-N-C@TABOH catalyst with densely accessible high intrinsic active FeNx sites is proposed. The method involves a single-step pyrolysis of Zn/Fe-zeolitic imidazolate framework (Zn/Fe-ZIF-H) with tetrabutylammonium hydroxide (TABOH) micelles, which is obtained by utilizing TABOH as a structural template and electronic mediator at room temperature for a brief duration of 16 min. Notably, the yield of Zn/Fe-ZIF-H is 3.5 times that of Zn/Fe-ZIF-N prepared by conventional method. Results indicate that in addition to expediting synthesis and increasing yield of the Zn/Fe-ZIF-H, the TABOH induces a hierarchical porous structure and fosters the formation of more and higher intrinsic active FeNx moieties in Fex-N-C@TABOH, showing that TABOH is a multifunctional template. Crucially, the increased mesoporosity/external surface area and optimized microenvironment of Fe-N-C@TABOH significantly enhance ORR activity by facilitating the formation of high intrinsic active FeNx sites, increasing accessible FeNx sites, and reducing mass transfer resistance. Through structure tailoring and microenvironment optimization, the resulting Fe-N-C@TABOH exhibits superior ORR performance. DFT calculation further validates that the synergistic effect of these two factors leads to low ORR barrier and optimized *OH adsorption energy. This study underscores the importance of structure and electronic engineering in the development of highly active ORR catalysts.

15.
Int J Biol Macromol ; : 133477, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942413

RESUMO

The highly efficient removal of oils such as oils or dyes from wastewater has aroused wide concern and is of great significance for clean production and environmental remediation. The synthesis of a novel aerogel (designated as HEC/LS) is reported herein, achieved through a sol-gel method followed by freeze-drying utilizing loofa and hydroxyethyl cellulose as the raw materials. The new HEC/LS aerogel exhibits excellent porosity and specific surface area, with a porosity of 88.70 %, a total pore area of 0.607 m2 g-1, and a specific surface area of 230 m2 g-1. The prepared HEC/LS aerogel exhibits exceptional hydrophilicity and self-floatability, facilitating its rapid absorption of water up to 21 times its own weight within a mere 3 s. Additionally, it demonstrates good adsorption performance for methylene blue (MB), with a maximum adsorption capacity of 83.30 mg g-1. Subsequently, a new hydrophobic microorganisms-loaded composite aerogel (namely, Bn-HEC/LS) was obtained by doping microorganisms into the as-prepared HEC/LS in multiple enrichment followed by a hydrophobic and oleophilic surface modification. Based on its rich porous structure and oleophilic wettability, the as-synthesized Bn-HEC/LS exhibits excellent selective adsorption and degradation properties for the oil contamination, the diesel oil could be selectively absorbed in the Bn-HEC/LS and degraded by the loaded microorganisms. Among them, B5-HEC/LS displays the highest removal efficiency of 94.50 % within 180 h, while free microorganisms and HEC/LS aerogels show degradation efficiencies of only 21.70 % and 48.10 %, respectively. The fixation of microorganisms in the aerogel increases their number within the material and enhances the relative microorganisms removal capacity. The hydrophobic and lipophilic modifications improve the selective adsorption performance of the aerogel on diesel oil, resulting in a significantly high removal rate of Bn-HEC/LS for diesel oil. The results indicate that the immobilization of microorganisms into aerogel improves the activity of microorganisms, and the hydrophobic and oleophilic modification enhances the selective adsorption performance of aerogel to diesel oil, thus resulting in a very high removal rate of Bn-HEC/LS for diesel oil. This study is expected to provide a now possibility for the green and efficient bioremediation of oils.

16.
Exp Mol Med ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945958

RESUMO

The senescence of alveolar type II (AT2) cells impedes self-repair of the lung epithelium and contributes to lung injury in the setting of idiopathic pulmonary fibrosis (IPF). Yes-associated protein 1 (YAP1) is essential for cell growth and organ development; however, the role of YAP1 in AT2 cells during pulmonary fibrosis is still unclear. YAP1 expression was found to be downregulated in the AT2 cells of PF patients. Deletion of YAP1 in AT2 cells resulted in lung injury, exacerbated extracellular matrix (ECM) deposition, and worsened lung function. In contrast, overexpression of YAP1 in AT2 cells promoted alveolar regeneration, mitigated pulmonary fibrosis, and improved lung function. In addition, overexpression of YAP1 alleviated bleomycin (BLM) -induced senescence of alveolar epithelial cells both in vivo and in vitro. Moreover, YAP1 promoted the expression of peroxiredoxin 3 (Prdx3) by directly interacting with TEAD1. Forced expression of Prdx3 inhibited senescence and improved mitochondrial dysfunction in BLM-treated MLE-12 cells, whereas depletion of Prdx3 partially abrogated the protective effect of YAP1. Furthermore, overexpression of Prdx3 facilitated self-repair of the injured lung and reduced ECM deposition, while silencing Prdx3 attenuated the antifibrotic effect of YAP1. In conclusion, this study demonstrated that YAP1 alleviates lung injury and pulmonary fibrosis by regulating Prdx3 expression to improve mitochondrial dysfunction and block senescence in AT2 cells, revealing a potential novel therapeutic strategy for pulmonary fibrosis.

17.
Brain Cogn ; 180: 106185, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38878607

RESUMO

Accumulated functional magnetic resonance imaging (fMRI) and electroencephalography evidence indicate that numerosity is first processed in the occipito-parietal cortex. fMRI evidence also indicates right-lateralized processing of numerosity, but there is no consistent evidence from event-related potential (ERP) studies. This study investigated the ERP of numerosity processing in the left, right, and bilateral visual fields. The single-trial ERP-behavioral correlation was applied to show how the ERP was associated with behavioral responses. The results showed a significant early behavioral-ERP correlation on the right N1 component when stimuli were presented in the left visual field rather than in the right visual field. The behavioral ERP correlation was termed BN1. There was bilateral BN1 based on the reaction time or error rate, but the right BN1 was larger than that the left BN1 when the stimulus was present in the bilateral visual field. Therefore, this study provided a new neural marker for individual differences in processing numerosity and suggested that processing numerosity was supported by the right occipito-parietal cortex.

18.
Mol Nutr Food Res ; 68(12): e2300912, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847553

RESUMO

Diabetic liver injury (DLI) is one of the complications of diabetes mellitus, which seriously jeopardizes human health. Punicalagin (PU), a polyphenolic compound mainly found in pomegranate peel, has been shown to ameliorate metabolic diseases such as DLI, and the mechanism needs to be further explored. In this study, a HFD/STZ-induced diabetic mouse model is established to investigate the effect and mechanism of PU on DLI. The results show that PU intervention significantly improves liver histology and serum biochemical abnormalities in diabetic mice, significantly inhibits the expression of pyroptosis-related proteins such as NLRP3, Caspase1, IL-1ß, and GSDMD in the liver of diabetic mice, and up-regulated the expression of autophagy-related proteins. Meanwhile, PU treatment significantly increases FoxO1 protein expression and inhibits TXNIP protein expression in the liver of diabetic mice. The above results are further verified in the HepG2 cell injury model induced by high glucose. AS1842856 is a FoxO1 specific inhibitor. The intervention of AS1842856 combined with PU reverses the regulatory effects of PU on pyroptosis and autophagy in HepG2 cells. In conclusion, this study demonstrates that PU may inhibit pyroptosis and upregulate autophagy by regulating FoxO1/TXNIP signaling, thereby alleviating DLI.


Assuntos
Autofagia , Proteínas de Transporte , Diabetes Mellitus Experimental , Proteína Forkhead Box O1 , Taninos Hidrolisáveis , Fígado , Camundongos Endogâmicos C57BL , Piroptose , Transdução de Sinais , Animais , Piroptose/efeitos dos fármacos , Taninos Hidrolisáveis/farmacologia , Autofagia/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Transdução de Sinais/efeitos dos fármacos , Humanos , Masculino , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Células Hep G2 , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Tiorredoxinas
19.
Free Radic Biol Med ; 222: 331-343, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876456

RESUMO

The progressive loss of dopaminergic neurons in the midbrain is the hallmark of Parkinson's disease (PD). A newly emerging form of lytic cell death, ferroptosis, has been implicated in PD. However, it remains unclear in terms of PD-associated ferroptosis underlying causative genes and effective therapeutic approaches. This research explored the underlying mechanism of ferroptosis-related genes in PD. Here, Firstly, we found NOX1 associated with ferroptosis differently in PD patients by bioinformatics analysis. In vitro and in vivo models of PD were constructed to explore the underlying mechanism. qPCR, Western blot analysis, immunohistochemistry, immunofluorescence, Ferro orange, and BODIPY C11 were utilized to analyze the levels of ferroptosis. Transcriptomics sequencing was to investigate the downstream pathway and the analysis of immunoprecipitation to validate the upstream factor. In conclusion, NOX1 upregulation and activation of ferroptosis-related neurodegeneration, therefore, might be useful as a clinical therapeutic agent.

20.
Autophagy ; : 1-18, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38910554

RESUMO

Excessive macroautophagy/autophagy leads to pancreatic ß-cell failure that contributes to the development of diabetes. Our previous study proved that the occurrence of deleterious hyperactive autophagy attributes to glucolipotoxicity-induced NR3C1 activation. Here, we explored the potential protective effects of (-)-epigallocatechin 3-gallate (EGCG) on ß-cell-specific NR3C1 overexpression mice in vivo and NR3C1-enhanced ß cells in vitro. We showed that EGCG protects pancreatic ß cells against NR3C1 enhancement-induced failure through inhibiting excessive autophagy. RNA demethylase FTO (FTO alpha-ketoglutarate dependent dioxygenase) caused diminished m6A modifications on mRNAs of three pro-oxidant genes (Tlr4, Rela, Src) and, hence, oxidative stress occurs; by contrast, EGCG promotes FTO degradation by the ubiquitin-proteasome system in NR3C1-enhanced ß cells, which alleviates oxidative stress, and thereby prevents excessive autophagy. Moreover, FTO overexpression abolishes the beneficial effects of EGCG on ß cells against NR3C1 enhancement-induced damage. Collectively, our results demonstrate that EGCG protects pancreatic ß cells against NR3C1 enhancement-induced excessive autophagy through suppressing FTO-stimulated oxidative stress, which provides novel insights into the mechanisms for the anti-diabetic effect of EGCG.Abbreviation 3-MA: 3-methyladenine; AAV: adeno-associated virus; Ad: adenovirus; ALD: aldosterone; AUC: area under curve; ßNR3C1 mice: pancreatic ß-cell-specific NR3C1 overexpression mice; Ctrl: control; CHX: cycloheximide; DEX: dexamethasone; DHE: dihydroethidium; EGCG: (-)-epigallocatechin 3-gallate; FTO: FTO alpha-ketoglutarate dependent dioxygenase; GSIS: glucose-stimulated insulin secretion; HFD: high-fat diet; HG: high glucose; i.p.: intraperitoneal; IOD: immunofluorescence optical density; KSIS: potassium-stimulated insulin secretion; m6A: N6-methyladenosine; MeRIP-seq: methylated RNA immunoprecipitation sequencing; NO: nitric oxide; NR3C1/GR: nuclear receptor subfamily 3, group C, member 1; NR3C1-Enhc.: NR3C1-enhancement; NAC: N-acetylcysteine; NC: negative control; PBS: phosphate-buffered saline; PI: propidium iodide; OCR: oxygen consumption rate; Palm.: palmitate; RELA: v-rel reticuloendotheliosis viral oncogene homolog A (avian); RNA-seq: RNA sequencing; O2.-: superoxide anion; SRC: Rous sarcoma oncogene; ROS: reactive oxygen species; T2D: type 2 diabetes; TEM: transmission electron microscopy; TLR4: toll-like receptor 4; TUNEL: terminal dUTP nick-end labeling; UTR: untranslated region; WT: wild-type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...