Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
BMC Pulm Med ; 24(1): 265, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825688

RESUMO

BACKGROUND: Chronic thromboembolic pulmonary hypertension (CTEPH) is a progressive pulmonary vascular disorder with substantial morbidity and mortality, also a disease underdiagnosed and undertreated. It is potentially curable by pulmonary endarterectomy (PEA) in patients with surgically accessible thrombi. Balloon pulmonary angioplasty (BPA) and targeted medical therapy are options for patients with distal lesions or persistent/recurrent pulmonary hypertension after PEA. There is an urgent need to increase the awareness of CTEPH. Qualified CTEPH centers are still quite limited. Baseline characteristics, management pattern and clinical outcome of CTEPH in China needs to be reported. METHODS AND DESIGN: The CHinese reAl-world study to iNvestigate the manaGEment pattern and outcomes of chronic thromboembolic pulmonary hypertension (CHANGE) study is designed to provide the multimodality treatment pattern and clinical outcomes of CTEPH in China. Consecutive patients who are ≥ 14 year-old and diagnosed with CTEPH are enrolled. The diagnosis of CTEPH is confirmed in right heart catheterization and imaging examinations. The multimodality therapeutic strategy, which consists of PEA, BPA and targeted medical therapy, is made by a multidisciplinary team. The blood sample and tissue from PEA are stored in the central biobank for further research. The patients receive regular follow-up every 3 or 6 months for at least 3 years. The primary outcomes include all-cause mortality and changes in functional and hemodynamic parameters from baseline. The secondary outcomes include the proportion of patients experiencing lung transplantation, the proportion of patients experiencing heart and lung transplantation, and changes in health-related quality of life. Up to 31 December 2023, the study has enrolled 1500 eligible patients from 18 expert centers. CONCLUSIONS: As a real-world study, the CHANGE study is expected to increase our understanding of CTEPH, and to fill the gap between guidelines and the clinical practice in the diagnosis, assessment and treatment of patients with CTEPH. REGISTRATION NUMBER IN CLINICALTRIALS.GOV: NCT05311072.


Assuntos
Angioplastia com Balão , Endarterectomia , Hipertensão Pulmonar , Embolia Pulmonar , Humanos , Hipertensão Pulmonar/terapia , China , Embolia Pulmonar/complicações , Embolia Pulmonar/terapia , Doença Crônica , Qualidade de Vida , Resultado do Tratamento , Feminino , Terapia Combinada , Masculino , População do Leste Asiático
2.
Artigo em Inglês | MEDLINE | ID: mdl-38870325

RESUMO

OBJECTIVE: Maternal cardiometabolic health (MCMH) may have critical effects on offspring lifetime CMH, whereas evidence on the relationship between MCMH during pregnancy and children CMH (CCMH) at ages 3∼6 years remains unknown. METHOD: The study included 1478 mother-child dyads from the Shanghai Maternal-Child Pairs Cohort study. MCMH was examined at a mean of 27.8 (24-36) weeks' gestation based on 8 metrics of 'Life Essential 8' framework involving pre-pregnancy body mass index, total cholesterol, glucose level, blood pressure, physical activity, sleep, diet quality, and nicotine exposure. CCMH was examined at the age of 3 to 6 based on 5 metrics including body mass index, physical activity, sleep health, diet quality, and nicotine exposure. To validate the robustness of main analysis, 499 children were selected to reevaluate CCMH by six metrics (adding blood pressure) for sensitivity analysis. RESULTS: Among 1478 mother-child dyads, the mean (SD) MCMH during pregnancy and CCMH scores were 67.07 (SD 8.82) and 73.80 (SD 10.75), respectively. After adjusting important confounders, each 10 points increase in (more favorable) MCMH score was significantly associated with a higher CCMH score (ß: 0.85, [95% confidence interval (CI): 0.22, 1.47]). Subgroup analysis showed similar results in girls but not in boys. For cardiometabolic risks factors in children, the risk of overweight/obesity and hypertension in children decreased with increased MCMH score (overweight/obesity, Relative Risks [RRs]: 0.98, 95%CI: [0.96, 0.99]); hypertension, RRs: 0.66, 95%CI: [0.47, 0.92]). Sensitivity analysis showed similar result. CONCLUSIONS: Better MCMH in pregnancy was associated with better CCMH at ages 3∼6 years.

3.
Front Microbiol ; 15: 1377001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863753

RESUMO

The Pollution Nagasaki (PN) section of the East China Sea (ECS) is a typical area for studying the complex hydrographic dynamics between Changjiang River discharge and Kuroshio, displaying intense variations of environmental gradients from nearshore to offshore. However, the temporal and spatial changes of microbial communities along the PN section have long been overlooked. In this study, we performed a comprehensive investigation into the abundance, diversity and ecology of free-living (FL) and particle-associated (PA) microbial communities in seawater samples along the PN section during both summer and winter. Distinct hydrological conditions and resulting environmental gradients were observed between summer and winter, with clear features of intrusive Kuroshio subsurface water in summer and strong vertical mixing of seawater in winter. Bacterial abundance along the PN section was higher in summer (1.11 × 108 copies·L-1 - 7.37 × 108 copies·L-1) than in winter (1.83 × 106 copies·L-1 - 1.34 × 108 copies·L-1). Microbial diversity, as indicated by α-diversity indices, remained at relatively stable levels in summer, while a clear decreasing trend was observed in winter along the PN section. Additionally, the winter communities exhibited a more evident spatial shift along the PN section compared to the summer communities. 16S rRNA gene amplicon sequencing showed that microbial community composition varied considerably between different seasons (summer and winter) and lifestyles (FL and PA), with a notable dominance of Ralstonia species. in winter. Regarding the assembly of microbial communities, the stochastic process represented by dispersal limitation was the dominant process in summer, while the deterministic homogeneous selection was the most important process in winter. Correspondingly, distinct topological properties of the microbial co-occurrence networks were shown between different seasons and along the PN section. These results enhance our understanding of how hydrological conditions influence dynamic changes of microbial communities along the PN section, providing new insights for the microbial community assembly and interactions in such a complex environment.

4.
Food Chem X ; 22: 101415, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38721387

RESUMO

This study investigated the effect of an edible water-extractable arabinoxylan (WEAX) coating on the postharvest preservation of strawberries and cherries. The WEAX film was prepared using carboxymethyl chitosan (CMCS) film as a control, with thorough characterization of its film properties. Subsequently, strawberry and cherry fruits were submerged in a solution containing edible film-forming materials and left to be stored at room temperature, followed by the analysis of their physicochemical parameters to assess their preservation efficacy. The results show that the WEAX film exhibited enhanced flexibility, superior water vapor permeability, thermal stability, and surface morphology. Furthermore, the implementation of WEAX film effectively mitigated weight loss, decay, color degradation, softening process, ascorbic acid decline, anthocyanin accumulation, and an increase in malondialdehyde content in fruits. Thus, the incorporation of WEAX coating demonstrates its capability in prolonging the shelf life of fruits post-harvest, underscoring its potential in fruit preservation practices.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38809406

RESUMO

An in-depth understanding of nitrate-contaminated surface water and groundwater quality and associated risks is important for groundwater management. Hydrochemical characteristics and driving forces of groundwater quality and non-carcinogenic risks of nitrate were revealed by the integrated approaches of self-organizing map analysis, spatial visualization by geography information system, entropy and irrigation water quality indices, and human health risk model. Groundwater samples were categorized into two clusters by SOM analysis. Cluster I including three samples were Ca-SO4 type and cluster II of remaining 136 samples were Ca-HCO3 type. Hydrochemical compositions of two cluster samples were dominated by water-rock interaction: (1) calcite and gypsum dissolution for cluster I samples and (2) calcite dissolution, silicate weathering, and positive cation exchange for cluster II samples. Nitrate contamination occurred in both cluster I and II samples, primarily induced by agricultural nitrogen fertilizer. The EWQI results showed that 90.97% in total groundwater samples were suitable for drinking purpose, while the IWQI results demonstrated that 65.03% in total groundwater samples were appropriate for irrigation purpose. The HHR model and Monte Carlo simulation indicated that the non-carcinogenic nitrated risk was highest in children. Exposure frequency was the most sensitive factor (86.33% in total) influencing the total non-carcinogenic risk, indicated by sensitivity analysis. Compared with the two clusters of groundwater, surface water has a shorter circulation cycle and lower ion concentrations resulting in better water quality. This study can provide scientific basis for groundwater quality evaluation in other parts of the world.

6.
Insect Sci ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728615

RESUMO

Wing dimorphism is regarded as an important phenotypic plasticity involved in the migration and reproduction of aphids. However, the signal transduction and regulatory mechanism of wing dimorphism in aphids are still unclear. Herein, the optimal environmental conditions were first explored for inducing winged offspring of green peach aphid, and the short photoperiod was the most important environmental cue to regulate wing dimorphism. Compared to 16 L:8 D photoperiod, the proportion of winged offspring increased to 90% under 8 L:16 D photoperiod. Subsequently, 5 differentially expressed microRNAs (miRNAs) in aphids treated with long and short photoperiods were identified using small RNA sequencing, and a novel miR-3040 was identified as a vital miRNA involved in photoperiod-mediated wing dimorphism. More specifically, the inhibition of miR-3040 expression could reduce the proportion of winged offspring induced by short photoperiod, whereas its activation increased the proportion of winged offspring under long photoperiod. Meanwhile, the expression level of miR-3040 in winged aphids was about 2.5 times that of wingless aphids, and the activation or inhibition of miR-3040 expression could cause wing deformity, revealing the dual-role regulator of miR-3040 in wing dimorphism and wing development. In summary, the current study identified the key environmental cue for wing dimorphism in green peach aphid, and the first to demonstrate the dual-role regulator of miR-3040 in photoperiod-mediated wing dimorphism and wing development.

7.
Signal Transduct Target Ther ; 9(1): 141, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811527

RESUMO

The immunoprotective components control COVID-19 disease severity, as well as long-term adaptive immunity maintenance and subsequent reinfection risk discrepancies across initial COVID-19 severity, remain unclarified. Here, we longitudinally analyzed SARS-CoV-2-specific immune effectors during the acute infection and convalescent phases of 165 patients with COVID-19 categorized by severity. We found that early and robust SARS-CoV-2-specific CD4+ and CD8+ T cell responses ameliorate disease progression and shortened hospital stay, while delayed and attenuated virus-specific CD8+ T cell responses are prominent severe COVID-19 features. Delayed antiviral antibody generation rather than titer level associates with severe outcomes. Conversely, initial COVID-19 severity imprints the long-term maintenance of SARS-CoV-2-specific adaptive immunity, demonstrating that severe convalescents exhibited more sustained virus-specific antibodies and memory T cell responses compared to mild/moderate counterparts. Moreover, initial COVID-19 severity inversely correlates with SARS-CoV-2 reinfection risk. Overall, our study unravels the complicated interaction between temporal characteristics of virus-specific T cell responses and COVID-19 severity to guide future SARS-CoV-2 wave management.


Assuntos
Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19 , Células T de Memória , Reinfecção , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/imunologia , COVID-19/patologia , SARS-CoV-2/imunologia , Masculino , Feminino , Reinfecção/imunologia , Pessoa de Meia-Idade , Linfócitos T CD8-Positivos/imunologia , Adulto , Anticorpos Antivirais/imunologia , Células T de Memória/imunologia , Idoso , Linfócitos T CD4-Positivos/imunologia , Memória Imunológica
8.
Sci Total Environ ; 935: 173276, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38796023

RESUMO

Identifying the natural background levels (NBLs), threshold values (TVs), sources and health risks of potentially toxic elements in groundwater is crucial for ensuring the water security of residents in highly urbanized areas. In this study, 96 groundwater samples were collected in urban area of Sichuan Basin, SW China. The concentrations of potentially toxic elements (Li, Fe, Cu, Zn, Al, Pb, B, Ba and Ni) were analyzed for investigating the NBLs, TVs, sources and health risks. The potentially toxic elements followed the concentration order of Fe > Ba > B > Al > Zn > Li > Cu > Ni > Pb. The NBLs and TVs indicated the contamination of potentially toxic elements mainly occurred in the northern and central parts of the study area. The Positive Matrix Factorization (PMF) model identified elevated concentrations of Fe, Al, Li, and B were found to determine groundwater quality. The primary sources of Fe, Al, Pb, and Ni were attributed to the dissolution of oxidation products, with Fe additionally affected by anthropogenic reduction environments. Li and B were determined to be originated from the weathering of tourmaline. High levels of Ni and Cu concentrations were derived from electronic waste leakage, while excessive Ba and Zn were linked to factory emissions and tire wear. The reasonable maximum exposure (RME) of hazard index (HI) was higher than safety standard and reveal the potential health risks in the southwestern study area. Sensitivity analysis demonstrated the Li concentrations possessed the highest weight contributing to health risk. This study provides a valuable information for source-specific risk assessments of potentially toxic elements in groundwater associated with urban areas.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , China , Medição de Risco , Urbanização , Humanos , Metais Pesados/análise , Cidades
9.
Ecotoxicol Environ Saf ; 278: 116423, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705039

RESUMO

Airborne fine particulate matter (PM2.5) exposure is closely associated with metabolic disturbance, in which brown adipose tissue (BAT) is one of the main contributing organs. However, knowledge of the phenotype and mechanism of PM2.5 exposure-impaired BAT is quite limited. In the study, male C57BL/6 mice at three different life phases (young, adult, and middle-aged) were simultaneously exposed to concentrated ambient PM2.5 or filtered air for 8 weeks using a whole-body inhalational exposure system. H&E staining and high-resolution respirometry were used to assess the size of adipocytes and mitochondrial function. Transcriptomics was performed to determine the differentially expressed genes in BAT. Quantitative RT-PCR, immunohistochemistry staining, and immunoblots were performed to verify the transcriptomics and explore the mechanism for BAT mitochondrial dysfunction. Firstly, PM2.5 exposure caused altered BAT morphology and mitochondrial dysfunction in middle-aged but not young or adult mice. Furthermore, PM2.5 exposure increased cellular senescence in BAT of middle-aged mice, accompanied by cell cycle arrest, impaired DNA replication, and inhibited AKT signaling pathway. Moreover, PM2.5 exposure disrupted apoptosis and autophagy homeostasis in BAT of middle-aged mice. Therefore, BAT in middle-aged mice was more vulnerable to PM2.5 exposure, and the cellular senescence-initiated apoptosis, autophagy, and mitochondrial dysfunction may be the mechanism of PM2.5 exposure-induced BAT impairment.


Assuntos
Tecido Adiposo Marrom , Poluentes Atmosféricos , Senescência Celular , Camundongos Endogâmicos C57BL , Mitocôndrias , Material Particulado , Animais , Material Particulado/toxicidade , Tecido Adiposo Marrom/efeitos dos fármacos , Masculino , Camundongos , Senescência Celular/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Mitocôndrias/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos
10.
Virus Res ; 345: 199386, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38705479

RESUMO

Coxsackievirus A16 (CV-A16) and coxsackievirus A10 (CV-A10), more commonly etiological agents of hand, foot and mouth disease (HFMD), are capable of causing severe neurological syndromes with high fatalities, but their neuropathogenesis has rarely been studied. Mounting evidence indicated that pyroptosis is an inflammatory form of cell death that might be widely involved in the pathogenic mechanisms of neurotropic viruses. Our study was designed to examine the effects of NLRP3-mediated pyroptosis in CV-A16- and CV-A10-induced inflammatory neuropathologic formation. In this work, it was showed that SH-SY5Y cells were susceptible to CV-A16 and CV-A10, and meanwhile their infections could result in a decreasing cell viability and an increasing LDH release as well as Caspase1 activation. Moreover, CV-A16 and CV-A10 infections triggered NLRP3-mediated pyroptosis and promoted the release of inflammatory cytokines. Additionally, activated NLRP3 accelerated the pyroptosis formation and aggravated the inflammatory response, but inhibited NLRP3 had a dampening effect on the above situation. Finally, it was further revealed that NLRP3 agonist enhanced the viral replication, but NLRP3 inhibitor suppressed the viral replication, suggesting that NLRP3-driven pyroptosis might support CV-A16 and CV-A10 production in SH-SY5Y cells. Together, our findings demonstrated a mechanism by which CV-A16 and CV-A10 induce inflammatory responses by evoking NLRP3 inflammasome-regulated pyroptosis, which in turn further stimulated the viral replication, providing novel insights into the pathogenesis of CV-A16 and CV-A10 infections.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Replicação Viral , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Citocinas/metabolismo , Citocinas/genética , Inflamação/virologia , Enterovirus/fisiologia , Enterovirus/patogenicidade , Linhagem Celular Tumoral , Inflamassomos/metabolismo , Enterovirus Humano A/fisiologia , Enterovirus Humano A/patogenicidade , Sobrevivência Celular
11.
Stress Health ; : e3419, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717279

RESUMO

To assess if the impacts of prenatal maternal stress (PNMS) on neonatal physical development including birth weight and body length vary by trimesters, and to explore the mediating effect of sleep quality in the relationships. A total of 2778 pregnant women were included from the Shanghai Maternal-Child Pairs Cohort. PNMS and sleep quality were measured in the first trimester (12-16 gestational weeks) and third trimester (32-36 gestational weeks) using the Life Event Scale for Pregnant Women (LESPW) and Pittsburgh Sleep Quality Index, respectively. And total LESPW scores were classified into three groups: high stress (≥75th percentile), medium stress (≥25th and <75th percentile), and low stress (<25th percentile). Multiple linear and logistic regressions were employed to examine the associations between PNMS and birth weight, and bootstrap were utilized to explore the mediating effects of maternal sleep. Higher (adjusted odds ratio, aOR = 1.521; 95% confidence interval (CI), 1.104-2.096) and medium (aOR = 1.421; 95% CI, 1.071-1.885) PNMS and stress from subjective events (aOR = 1.334; 95% CI, 1.076-1.654) in the first trimester were significantly associated with elevated risk for large for gestational age. Maternal severe negative objective events stress (OE3) in the third trimester were negatively associated with birth weight (ß = -0.667; 95% CI, -1.047∼-0.287), and maternal sleep latency during this period acted as a mediator in the association (indirect effect: ß = -0.0144; 95% CI, -0.0427∼-0.0003). Besides, a significant negative correlation between total LESPW score (ß = -0.022; 95% CI, -0.038∼-0.006; per 100 score) and body length in the third trimester was also observed. The impact of PNMS on neonatal birth weight varies by stress types and exposure timing. Prolonged maternal sleep latency in the third trimester correlated with lower birth weight, and mediating the link of OE3 and birth weight, which might indicate a critical period of vulnerability to the effects of PNMS on neonatal physical development.

12.
Sci Total Environ ; 927: 172366, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614325

RESUMO

BACKGROUND: Concerns remain about the neurotoxic properties of the ubiquitous organophosphate esters (OPEs), the replacement of the toxicant polybrominated diphenyl ethers. OBJECTIVES: We examined the associations of prenatal exposure to OPEs and their mixtures with early-life neurodevelopment trajectories. METHODS: Totally 1276 mother-child pairs were recruited from the Shanghai Maternal-Child Pairs Cohort. A high-performance liquid chromatography-triple quadrupole mass spectrometer was used to measure the levels of 7 OPEs in cord serum. Ages and Stages Questionnaires was used to examine children's neuropsychological development at 2, 6, 12, and 24 months of age. Group-based trajectory models were applied to derive the neurodevelopmental trajectories. Multiple linear regression and logistic regression model were performed to assess the relationships between OPEs exposure and neurodevelopment and trajectories. Mixtures for widely detected OPEs (n = 4) were investigated using quantile-based g-computation. RESULTS: Tributyl phosphate (TBP), tris (2-butoxy ethyl) phosphate (TBEP), tris(1,3-dichloro-2-propyl) phosphate (TDCPP), and 2-ethylhexyl diphenyl phosphate (EHDPP), had detection rates >50 %. TDCPP had the highest median concentration (1.02 µg/L) in cord serum. EHDPP concentrations were negatively associated with scores in most domains at 12 months of age, with effect values (ß) ranging from -1.89 to -0.57. EHDPP could negatively affect the total ASQ (OR = 1.07, 95 % CI: 1, 1.15) and gross-motor (OR = 1.09, 95 % CI: 1.02, 1.17) trajectory in infancy. Joint exposure to OPEs was associated with decreased scores in the total ASQ, gross-motor, fine-motor and problem-solving domain of 12-month-old infants, with ß ranging from -5.93 to -1.25. In addition, the qgcomp models indicated significant positive associations between the concentrations of OPEs mixtures and risks of the persistently low group of the total ASQ, gross-motor and fine-motor development in early childhood. The impact of OPEs was more pronounced in boys. DISCUSSION: Our findings suggested OPEs, especially EHDPP, had a persistently negative effect on neurodevelopment during the first 2 years.


Assuntos
Desenvolvimento Infantil , Ésteres , Organofosfatos , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , China , Organofosfatos/toxicidade , Lactente , Gravidez , Desenvolvimento Infantil/efeitos dos fármacos , Exposição Materna/estatística & dados numéricos , Masculino , Poluentes Ambientais , Pré-Escolar , Estudos de Coortes , Adulto
13.
Virol J ; 21(1): 89, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641810

RESUMO

Coxsackievirus-A10 (CV-A10), responsible for the hand, foot and mouth disease (HFMD) pandemic, could cause serious central nervous system (CNS) complications. The underlying molecular basis of CV-A10 and host interactions inducing neuropathogenesis is still unclear. The Hippo signaling pathway, historically known for a dominator of organ development and homeostasis, has recently been implicated as an immune regulator. However, its role in host defense against CV-A10 has not been investigated. Herein, it was found that CV-A10 proliferated in HMC3 cells and promoted the release of inflammatory cytokines. Moreover, pattern recognition receptors (PRRs)-mediated pathways, including TLR3-TRIF-TRAF3-TBK1-NF-κB axis, RIG-I/MDA5-MAVS-TRAF3-TBK1-NF-κB axis and TLR7-MyD88-IRAK1/IRAK4-TRAF6-TAK1-NF-κB axis, were examined to be elevated under CV-A10 infection. Meanwhile, it was further uncovered that Hippo signaling pathway was inhibited in HMC3 cells with CV-A10 infection. Previous studies have been reported that there exist complex relations between innate immune and Hippo signaling pathway. Then, plasmids of knockdown and overexpression of MST1/2 were transfected into HMC3 cells. Our results showed that MST1/2 suppressed the levels of inflammatory cytokines via interacting with TBK1 and IRAK1, and also enhanced virus production via restricting IRF3 and IFN-ß expressions. Overall, these data obviously pointed out that CV-A10 accelerated the formation of neuroinflammation by the effect of the Hippo pathway on the PRRs-mediated pathway, which delineates a negative immunoregulatory role for MST1/2 in CV-A10 infection and the potential for this pathway to be pharmacologically targeted to treat CV-A10.


Assuntos
Benzenoacetamidas , Infecções por Coxsackievirus , NF-kappa B , Piperidonas , Humanos , NF-kappa B/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Doenças Neuroinflamatórias , Imunidade Inata , Citocinas/metabolismo
14.
J Contam Hydrol ; 264: 104344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643620

RESUMO

Groundwater is crucial for agriculture and domestic consumption. This research investigated the hydrogeochemical properties and contaminant sources of groundwater within the mountainous terrain of northern Chongqing, with the objective of evaluating its appropriateness for irrigation and potable use. The hydrochemical type of the groundwater was HCO3 - Ca, dominated by silicate and calcite dissolutions. High NO3- (29.03% exceeds 10 mg/L) were attributed to the overuse of agricultural fertilizers. A comprehensive evaluation was conducted to determine the groundwater suitability for agricultural and potable uses. The results showed that groundwater in the southwestern region, particularly within the Yangtze River mainstem watershed, exhibited less suitability for irrigation owing to its lower mineralization, in contrast to the northeastern region near the Daning River watershed. But this trend is reversed for drinking purposes. Overall, the groundwater was appropriate for both drinking (93.55% were classified as excellent) and irrigation (70.98% were classified as low restriction) purposes in the study area. Deterministic and probabilistic noncarcinogenic health risk analyses centered on nitrate exposure revealed that infants (with 13.79% of samples >1) were at greater risk than children (8.58%), adult males (6.98%), and adult females (5.24%). This underscores the urgency to reduce nitrogen fertilizer usage and improve water management in the region. This research will provide guidance for the sustainable groundwater management in mountainous regions.


Assuntos
Irrigação Agrícola , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Água Subterrânea/análise , China , Humanos , Irrigação Agrícola/métodos , Água Potável/análise , Água Potável/química , Poluentes Químicos da Água/análise , Medição de Risco , Qualidade da Água , Feminino , Monitoramento Ambiental , Masculino , Adulto , Nitratos/análise , Fertilizantes/análise
15.
Clinics (Sao Paulo) ; 79: 100365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38677194

RESUMO

OBJECTIVE: This study explored the pharmacological mechanism of Tanshinone IIA (TAN IIA) in the treatment of Osteoarthritis (OA), which provided a certain reference for further research and clinical application of Tan IIA in OA. METHODS: CHON-001 cells were stimulated with 10 µg/mL IL-1ß for 48 h and treated with 10 µM TAN IIA for 48 h. Cellular viability and apoptosis were evaluated by CCK-8 assay and flow cytometry, and Cleaved caspase-3 was measured by Immunoblot assay and RT-qPCR. TNF-α, IL-6, and iNOS in CHON-001 cells were determined by RT-qPCR and ELISA. To further verify the effect of TAN IIA on OA, a rat model of OA in vivo was established by right anterior cruciate ligament transection. TAN IIA was administered at 50 mg/kg or 150 mg/kg for 7 weeks. The degree of cartilage destruction in OA rats was observed by TUNEL and HE staining. Cleaved caspase-3 and FBXO11 were measured by immunohistochemical staining, RT-qPCR, and Immunoblot. TNF-α, IL-6, and iNOS in chondrocytes of OA rats were detected by ELISA. RESULTS: IL-1ß stimulated CHON-001 cell apoptosis and inflammation, and TAN IIA had anti-apoptosis and anti-inflammatory effects on IL-1ß-regulated CHON-001 cells. TAN IIA down-regulated FBXO11 and inhibited PI3K/AKT and NF-κB pathways, thereby alleviating apoptotic and inflammatory reactions in CHON-001 cells under IL-1ß treatment. Moreover, TAN IIA treatment improved chondrocyte apoptosis and inflammations in OA rats. CONCLUSION: TAN IIA inhibits PI3K/Akt and NF-κB pathways by down-regulating FBXO11 expression, alleviates chondrocyte apoptosis and inflammation, and delays the progression of OA.


Assuntos
Abietanos , Apoptose , Condrócitos , Interleucina-1beta , Osteoartrite , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Animais , Abietanos/farmacologia , Apoptose/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Osteoartrite/metabolismo , Masculino , Proteínas F-Box/metabolismo , Ratos Sprague-Dawley , Inflamação/tratamento farmacológico , Inflamação/metabolismo , NF-kappa B/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Caspase 3/metabolismo
16.
Chemosphere ; 355: 141776, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522667

RESUMO

The efficient removal of phosphate from water environments was extremely significant to control eutrophication of water bodies and prevent further deterioration of water quality. In this study, oxygen vacancy-rich magnesium oxide (OV-MgO) microspheres were synthesized by a simple solvothermal method coupling high-temperature calcination. The effects of adsorbent dosage, contact time, initial pH and coexisting components on phosphate adsorption performance were examined. The physicochemical properties of OV-MgO microspheres and the phosphate removal mechanisms were analyzed by various characterization techniques. The maximum adsorption capacity predicted by the Sips isotherm model was 379.7 mg P/g for OV-MgO microspheres. The phosphate adsorption in this study had a fast adsorption kinetics and a high selectivity. OV-MgO microspheres had a good acid resistance for phosphate adsorption, but their adsorption capacity decreased under alkaline conditions. The electrostatic attraction, ligand exchange, surface precipitation, inner-sphere surface complexation and oxygen vacancy capture were mainly responsible for efficient removal of phosphate from aqueous solutions. This study probably promoted the development of oxygen vacancy-rich metal (hydr)oxides with potential application prospects.


Assuntos
Fosfatos , Poluentes Químicos da Água , Fosfatos/química , Óxido de Magnésio/química , Microesferas , Poluentes Químicos da Água/análise , Cinética , Adsorção
17.
J Hazard Mater ; 470: 134143, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554507

RESUMO

To address time-consuming and efficiency-limited challenges in conventional zero-valent iron (ZVI, Fe0) reduction or biotransformation for perfluorooctanoic acid (PFOA) treatment, two calcium alginate-embedded amendments (biochar-immobilized PFOA-degrading bacteria (CB) and ZVI (CZ)) were developed to construct microbe-Fe0 high-rate interaction systems. Interaction mechanisms and key metabolic pathways were systematically explored using metagenomics and a multi-process coupling model for PFOA under microbe-Fe0 interaction. Compared to Fe0 (0.0076 day-1) or microbe (0.0172 day-1) systems, the PFOA removal rate (0.0426 day-1) increased by 1.5 to 4.6 folds in the batch microbe-Fe0 interaction system. Moreover, Pseudomonas accelerated the transformation of Fe0 into Fe3+, which profoundly impacted PFOA transport and fate. Model results demonstrated microbe-Fe0 interaction improved retardation effect for PFOA in columns, with decreased dispersivity a (0.48 to 0.20 cm), increased reaction rate λ (0.15 to 0.22 h-1), distribution coefficient Kd (0.22 to 0.46 cm3∙g-1), and fraction f´(52 % to 60 %) of first-order kinetic sorption of PFOA in microbe-Fe0 interaction column system. Moreover, intermediates analysis showed that microbe-Fe0 interaction diversified PFOA reaction pathways. Three key metabolic pathways (ko00362, ko00626, ko00361), eight functional genes, and corresponding enzymes for PFOA degradation were identified. These findings provide insights into microbe-Fe0 "neural network-type" interaction by unveiling biotransformation and mineral transformation mechanisms for efficient PFOA treatment.


Assuntos
Biodegradação Ambiental , Caprilatos , Fluorocarbonos , Ferro , Fluorocarbonos/metabolismo , Fluorocarbonos/química , Caprilatos/metabolismo , Caprilatos/química , Ferro/metabolismo , Ferro/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Biotransformação , Redes Neurais de Computação , Bactérias/metabolismo , Bactérias/genética , Pseudomonas/metabolismo , Pseudomonas/genética
18.
Public Health ; 229: 144-150, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442596

RESUMO

OBJECTIVES: The aim of this study was to evaluate the individual and combined effects of maternal smoking during pregnancy (MSDP) and personal smoking on mortality and life expectancy. STUDY DESIGN: A prospective cohort study based on the UK Biobank, with a median follow-up of 12.47 years. METHODS: This study employed multivariate Cox regression to determine the relative risks of mortality from all causes and specific diseases according to maternal and/or personal smoking status and pack-years of smoking (0, 1-20, 21-30, >30). Additionally, this study estimated the additive interaction between the two exposures. Life table analyses were performed using the estimated age-specific mortality rates to forecast life expectancy. RESULTS: Results indicated that MSDP elevated the risk of all-cause mortality (HR = 1.12, 95% CI: 1.09-1.15) and mortality due to neoplasms (HR = 1.10, 95% CI: 1.06-1.12), circulatory (HR = 1.13, 95% CI: 1.06-1.19), respiratory (HR = 1.27, 95% CI: 1.16-1.40) and digestive system diseases (HR = 1.22, 95% CI: 1.08-1.38). Notably, both multiplicative and additive interactions were observed between maternal and personal smoking, with Relative Excess Risk due to Interaction (RERI) values for mortality from all causes, neoplasms, circulatory, and respiratory diseases being 0.21, 0.22, 0.16, and 0.76, respectively. This study also found a trend towards shorter gained life expectancy when maternal smoking and increasing pack-years of personal smoking were combined. CONCLUSIONS: In this cohort study of UK Biobank, MSDP was associated with an increased risk of all-cause mortality and reduced life expectancy, suggesting that quitting smoking during pregnancy might have health and longevity benefits for both generations.


Assuntos
Expectativa de Vida , Neoplasias , Feminino , Gravidez , Humanos , Causas de Morte , Estudos de Coortes , Estudos Prospectivos , Fumar/efeitos adversos , Fatores de Risco
19.
Math Biosci Eng ; 21(2): 2856-2878, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38454710

RESUMO

Three-dimensional path planning refers to determining an optimal path in a three-dimensional space with obstacles, so that the path is as close to the target location as possible, while meeting some other constraints, including distance, altitude, threat area, flight time, energy consumption, and so on. Although the bald eagle search algorithm has the characteristics of simplicity, few control parameters, and strong global search capabilities, it has not yet been applied to complex three-dimensional path planning problems. In order to broaden the application scenarios and scope of the algorithm and solve the path planning problem in three-dimensional space, we present a study where five three-dimensional geographical environments are simulated to represent real-life unmanned aerial vehicles flying scenarios. These maps effectively test the algorithm's ability to handle various terrains, including extreme environments. The experimental results have verified the excellent performance of the BES algorithm, which can quickly, stably, and effectively solve complex three-dimensional path planning problems, making it highly competitive in this field.

20.
Nutrients ; 16(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474882

RESUMO

Previous studies have shown that advanced glycation end products (AGEs) are implicated in the occurrence and progression of numerous diseases, with dietary AGEs being particularly associated with intestinal disorders. In this study, methylglyoxal-beta-lactoglobulin AGEs (MGO-ß-LG AGEs) were utilized as the exclusive nitrogen source to investigate the interaction between protein-bound AGEs and human gut microbiota. The high-resolution mass spectrometry analysis of alterations in peptides containing AGEs within metabolites before and after fermentation elucidated the capacity of intestinal microorganisms to enzymatically hydrolyze long-chain AGEs into short-chain counterparts. The 16S rRNA sequencing revealed Klebsiella, Lactobacillus, Escherichia-Shigella, and other genera as dominant microbiota at different fermentation times. A total of 187 potential strains of AGE-metabolizing bacteria were isolated from the fermentation broth at various time points. Notably, one strain of Klebsiella exhibited the most robust growth capacity when AGEs served as the sole nitrogen source. Subsequently, proteomics was employed to compare the changes in protein levels of Klebsiella X15 following cultivation in unmodified proteins and proteins modified with AGEs. This analysis unveiled a remodeled amino acid and energy metabolism pathway in Klebsiella in response to AGEs, indicating that Klebsiella may possess a metabolic pathway specifically tailored to AGEs. This study found that fermenting AGEs in healthy human intestinal microbiota altered the bacterial microbiota structure, especially by increasing Klebsiella proliferation, which could be a key factor in AGEs' role in causing diseases, particularly intestinal inflammation.


Assuntos
Produtos Finais de Glicação Avançada , Aldeído Pirúvico , Humanos , Produtos Finais de Glicação Avançada/metabolismo , RNA Ribossômico 16S , Aldeído Pirúvico/química , Bactérias/metabolismo , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...