Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 222, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594767

RESUMO

Csn5 is subunit 5 of the COP9 signalosome (CSN), but the mechanism by which it strictly controls the pathogenicity of pathogenic fungi through autophagy remains unclear. Here, we found that Csn5 deficiency attenuated pathogenicity and enhanced autophagy in Magnaporthe oryzae. MoCSN5 knockout led to overubiquitination and overdegradation of MoTor (the core protein of the TORC1 complex [target of rapamycin]) thereby promoted autophagy. In addition, we identified MoCsn5 as a new interactor of MoAtg6. Atg6 was found to be ubiquitinated through linkage with lysine 48 (K48) in cells, which is necessary for infection-associated autophagy in pathogenic fungi. K48-ubiquitination of Atg6 enhanced its degradation and thereby inhibited autophagic activity. Our experimental results indicated that MoCsn5 promoted K48-ubiquitination of MoAtg6, which reduced the MoAtg6 protein content and thus inhibited autophagy. Aberrant ubiquitination and autophagy in ΔMocsn5 led to pleiotropic defects in the growth, development, stress resistance, and pathogenicity of M. oryzae. In summary, our study revealed a novel mechanism by which Csn5 regulates autophagy and pathogenicity in rice blast fungus through ubiquitination.


Assuntos
Ascomicetos , Virulência , Proteínas , Ubiquitinação , Autofagia
2.
J Pharm Sci ; 113(7): 1874-1884, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38354909

RESUMO

Intermolecular interactions between drug and co-former are crucial in the formation, release and physical stability of co-amorphous system. However, the interactions remain difficult to investigate with only experimental tools. In this study, intermolecular interactions of co-amorphous curcumin-piperine (i.e., CUR-PIP CM) during formation, dissolution and storage were explored by integrating experimental and modeling techniques. The formed CUR-PIP CM exhibited the strong hydrogen bond interaction between the phenolic OH group of CUR and the CO group of PIP as confirmed by FTIR, ss 13C NMR and molecular dynamics (MD) simulation. In comparison to crystalline CUR, crystalline PIP and their physical mixture, CUR-PIP CM performed significantly increased dissolution accompanied by the synchronized release of CUR and PIP, which arose from the greater interaction energy of H2O-CUR molecules and H2O-PIP molecules than CUR-PIP molecules, breaking the hydrogen bond between CUR and PIP molecules, and then causing a pair-wise solvation of CUR-PIP CM at the molecular level. Furthermore, the stronger intermolecular interaction between CUR and PIP was revealed by higher binding energy of CUR-PIP molecules, which contributed to the excellent physical stability of CUR-PIP CM over amorphous CUR or PIP. The study provides a unique insight into the formation, release and stability of co-amorphous system from MD perspective. Meanwhile, this integrated technique can be used as a practical methodology for the future design of co-amorphous formulations.


Assuntos
Benzodioxóis , Curcumina , Estabilidade de Medicamentos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Piperidinas , Alcamidas Poli-Insaturadas , Solubilidade , Curcumina/química , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Benzodioxóis/química , Liberação Controlada de Fármacos , Cristalização/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Química Farmacêutica/métodos , Espectroscopia de Ressonância Magnética/métodos , Alcaloides
3.
Plant Commun ; 5(2): 100720, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37718510

RESUMO

The ubiquitin-proteasome system and the autophagy system are the two primary mechanisms used by eukaryotes to maintain protein homeostasis, and both are closely related to the pathogenicity of the rice blast fungus. In this research, we identified MoCand2 as an inhibitor of ubiquitination in Magnaporthe oryzae. Through this role, MoCand2 participates in the regulation of autophagy and pathogenicity. Specifically, we found that deletion of MoCand2 increased the ubiquitination level in M. oryzae, whereas overexpression of MoCand2 inhibited the accumulation of ubiquitinated proteins. Interaction analyses showed that MoCand2 is a subunit of Cullin-RING ligases (CRLs). It suppresses ubiquitination by blocking the assembly of CRLs and downregulating the expression of key CRL subunits. Further research indicated that MoCand2 regulates autophagy through ubiquitination. MoCand2 knockout led to over-ubiquitination and over-degradation of MoTor, and we confirmed that MoTor content was negatively correlated with autophagy level. In addition, MoCand2 knockout accelerated the K63 ubiquitination of MoAtg6 and strengthened the assembly and activity of the phosphatidylinositol-3-kinase class 3 complex, thus enhancing autophagy. Abnormal ubiquitination and autophagy in ΔMocand2 resulted in defects in growth, conidiation, stress resistance, and pathogenicity. Finally, sequence alignment and functional analyses in other phytopathogenic fungi confirmed the high conservation of fungal Cand2s. Our research thus reveals a novel mechanism by which ubiquitination regulates autophagy and pathogenicity in phytopathogenic fungi.


Assuntos
Autofagia , Ubiquitina , Virulência , Ubiquitinação , Autofagia/genética , Fungos
4.
Int J Pharm ; 646: 123490, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37805146

RESUMO

Solid dispersion (SD) system has been used as an effective formulation strategy to increase in vitro and in vivo performances of poorly water-soluble drugs, such as solubility/dissolution, stability and bioavailability. This review provides a comprehensive SD classification and identifies the most popular amorphous solid dispersions (ASDs). Meanwhile, this review further puts forward the systematic design strategy of satisfactory ASDs in terms of drug properties, carrier selection, preparation methods and stabilization mechanisms. In addition, hot melt extrusion (HME) as the continuous manufacturing technique is described including the principle and structure of HME instrument, key process parameters and production application, in order to guide the scale-up of ASDs and develop more ASD products to the market in pharmaceutical industry.


Assuntos
Química Farmacêutica , Tecnologia de Extrusão por Fusão a Quente , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Temperatura Alta , Solubilidade
5.
J Colloid Interface Sci ; 629(Pt B): 773-784, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36195017

RESUMO

The efficiency of reactive oxygen species (ROS)-based photodynamic therapy (PDT) is far from satisfactory, because cancer cells can adapt to PDT by upregulating glutathione (GSH) levels. The GSH levels in tumor cells are determined based on glutamine availability via alanine-serine-cysteine transporter 2 (ASCT2)-mediated entry into cells. Herein, we develop co-assembled nanoparticles (PPa/V-9302 NPs) of the photosensitizer pyropheophorbide a (PPa) and V-9302 (a known inhibitor of ASCT2) in a 1:1 M ratio using a one-step precipitation method to auto-enhance photodynamic therapy. The computational simulations revealed that PPa and V-9302 could self-assemble through different driving forces, such as π-π stacking, hydrophobic interactions, and ionic bonds. Such PPa/V-9302 NPs could disrupt the intracellular redox homeostasis due to enhanced ROS production via PPa-induced PDT and reduced GSH synthesis via inhibition of the ASCT2-mediated glutamine flux by V-9302. The in vivo assays reveal that PPa/V-9302 NPs could increase the drug accumulation in tumor sites and suppress tumor growth in BALB/c mice bearing mouse breast carcinoma (4 T1) tumor. Our findings provide a new paradigm for the rational design of the PDT-based combinational cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/química , Cisteína , Espécies Reativas de Oxigênio , Glutamina/uso terapêutico , Neoplasias/tratamento farmacológico , Nanopartículas/química , Linhagem Celular Tumoral
6.
Microbiol Spectr ; 10(6): e0202022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445131

RESUMO

The COP9 signalosome (CSN) is a highly conserved protein complex in eukaryotes, affecting various development and signaling processes. To date, the biological functions of the COP9 signalosome and its subunits have not been determined in Magnaporthe oryzae. In this study, we characterized the CSN in M. oryzae (which we named MoCsn6) and analyzed its biological functions. MoCsn6 is involved in fungal development, autophagy, and plant pathogenicity. Compared with the wild-type strain 70-15, ΔMocsn6 mutants showed a significantly reduced growth rate, sporulation rate, and germ tube germination rate. Pathogenicity assays showed that the ΔMocsn6 mutants did not cause or significantly reduced the number of disease spots on isolated barley leaves. After the MoCSN6 gene was complemented into the ΔMocsn6 mutant, vegetative growth, sporulation, and pathogenicity were restored. The Osm1 and Pmk1 phosphorylation pathways were also disrupted in the ΔMocsn6 mutants. Furthermore, we found that MoCsn6 participates in the autophagy pathway by interacting with the autophagy core protein MoAtg6 and regulating its ubiquitination level. Deletion of MoCSN6 resulted in rapid lipidation of MoAtg8 and degradation of the autophagic marker protein green fluorescent protein-tagged MoAtg8 under nutrient and starvation conditions, suggesting that MoCsn6 negatively regulates autophagic activity. Taken together, our results demonstrate that MoCsn6 plays a crucial role in regulating fungal development, pathogenicity, and autophagy in M. oryzae. IMPORTANCE Magnaporthe oryzae, a filamentous fungus, is the cause of many cereal diseases. Autophagy is involved in fungal development and pathogenicity. The COP9 signalosome (CSN) has been extensively studied in ubiquitin pathways, but its regulation of autophagy has rarely been reported in plant-pathogenic fungi. Investigations on the relationship between CSN and autophagy will deepen our understanding of the pathogenic mechanism of M. oryzae and provide new insights into the development of new drug targets to control fungal diseases. In this study, the important function of Csn6 in the autophagy regulation pathway and its impact on the pathogenicity of M. oryzae were determined. We showed that Csn6 manages autophagy by interacting with the autophagy core protein Atg6 and regulating its ubiquitination level. Furthermore, future investigations that explore the function of CSN will deepen our understanding of autophagy mechanisms in rice blast fungus.


Assuntos
Proteínas Fúngicas , Magnaporthe , Virulência/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/genética , Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/metabolismo , Autofagia , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Regulação Fúngica da Expressão Gênica
7.
J Fungi (Basel) ; 8(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36135640

RESUMO

Purine nucleotides are indispensable compounds for many organisms and participate in basic vital activities such as heredity, development, and growth. Blocking of purine nucleotide biosynthesis may inhibit proliferation and development and is commonly used in cancer therapy. However, the function of the purine nucleotide biosynthesis pathway in the pathogenic fungus Magnaporthe oryzae is not clear. In this study, we focused on the de novo purine biosynthesis (DNPB) pathway and characterized MoAde8, a phosphoribosylglycinamide formyltransferase, catalyzing the third step of the DNPB pathway in M. oryzae. MoAde8 was knocked out, and the mutant (∆Moade8) exhibited purine auxotroph, defects in aerial hyphal growth, conidiation, and pathogenicity, and was more sensitive to hyperosmotic stress and oxidative stress. Moreover, ∆Moade8 caused decreased activity of MoTor kinase due to blocked purine nucleotide synthesis. The autophagy level was also impaired in ∆Moade8. Additionally, MoAde5, 7, 6, and 12, which are involved in de novo purine nucleotide biosynthesis, were also analyzed, and the mutants showed defects similar to the defects of ∆Moade8. In summary, de novo purine nucleotide biosynthesis is essential for conidiation, development, and pathogenicity in M. oryzae.

8.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563048

RESUMO

Plant diseases caused by fungi are one of the major threats to global food security and understanding the interactions between fungi and plants is of great significance for plant disease control. The interaction between pathogenic fungi and plants is a complex process. From the perspective of pathogenic fungi, pathogenic fungi are involved in the regulation of pathogenicity by surface signal recognition proteins, MAPK signaling pathways, transcription factors, and pathogenic factors in the process of infecting plants. From the perspective of plant immunity, the signal pathway of immune response, the signal transduction pathway that induces plant immunity, and the function of plant cytoskeleton are the keys to studying plant resistance. In this review, we summarize the current research progress of fungi-plant interactions from multiple aspects and discuss the prospects and challenges of phytopathogenic fungi and their host interactions.


Assuntos
Fungos , Plantas , Doenças das Plantas/microbiologia , Imunidade Vegetal , Plantas/microbiologia , Fatores de Virulência
9.
J Med Chem ; 65(6): 4565-4577, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34842428

RESUMO

The naturally occurring linear dipeptide JBP923 (trans-4-l-Hyp-l-Ser, HS-tLL) with anti-inflammatory effects showed potential for the treatment of inflammatory bowel disease (IBD). However, colon-specific delivery after oral administration is still a challenge because its absorption is mediated by oligopeptide transporter 1 (PEPT1) in the upper small intestine and because of its instability in the gastrointestinal tract. Therefore, we aimed to enhance the colon-targeting efficiency by modulating HS-tLL chirality to synthesize eight enantiomers. Among these enantiomers, trans-4-d-Hyp-d-Ser, cis-4-l-Hyp-d-Ser, cis-4-d-Hyp-l-Ser, and cis-4-d-Hyp-d-Ser did not work as substrates of PEPT1 and were stable in the gastrointestinal tract, resulting in enhanced colonic accumulation through the paracellular pathway due to the loose tight junctions in IBD. Interestingly, cis-4-d-Hyp-d-Ser exerted the most potent therapeutic effect on IBD. Our findings revealed the impact of chirality on the colonic accumulation of the linear dipeptide, providing strategies for the colon-targeted delivery of the linear dipeptide for the treatment of IBD.


Assuntos
Doenças Inflamatórias Intestinais , Transportador 1 de Peptídeos , Simportadores , Colo , Dipeptídeos/química , Dipeptídeos/farmacologia , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Transportador 1 de Peptídeos/química , Serina/farmacologia , Simportadores/metabolismo
10.
Asian J Pharm Sci ; 17(6): 938-948, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36600899

RESUMO

Currently commercial fixed-concomitant three agents have multiple problems such as multiple dosing administration, poor efficacy and side effects. Once-daily fixed-combination timolol-netarsudil-latanoprost ophthalmic solution (FC-TNL) has the ability to treat glaucoma by lowering the intraocular pressure (IOP) with great efficacy and improving patient compliance. However, the commercialized netarsudil dimesylate precipitated when the pH of the solution was above 5.4, or when maleic acid, the salt of commercial timolol maleate, was mixed with netarsudil dimesylate. Consequently, the homologous salt engineering strategy was used to make netarsudil dimesylate soluble in pH 4.8-5.2 solution by synthesizing timolol mesylate. Next, the morphology of timolol mesylate was observed by scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and powder X-ray diffraction. The prepared FC-TNL showed good stability during refrigeration storage. Additionally, FC-TNL exerted no influence on the intraocular penetration of each active compounds in the pharmacokinetic study. Importantly, once-daily FC-TNL exerted potent IOP-lowering effect and protective effect on retinal ganglion cells. The FC-TNL was stable, safe and effective, being a promising glaucoma therapeutic.

11.
Virulence ; 11(1): 1685-1700, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33200669

RESUMO

The process of protein translocation into the endoplasmic reticulum (ER) is the initial and decisive step in the biosynthesis of all secretory proteins and many soluble organelle proteins. In this process, the Sec61 complex is the protein-conducting channel for transport. In this study, we identified and characterized the ß subunit of the Sec61 complex in Magnaporthe oryzae (MoSec61ß). Compared with the wild-type strain Guy11, the ΔMosec61ß mutant exhibited highly branched mycelial morphology, reduced conidiation, high sensitivity to cell wall integrity stress, severely reduced virulence to rice and barley, and restricted biotrophic invasion. The turgor pressure of ΔMosec61ß was notably reduced, which affected the function of appressoria. Moreover, ΔMosec61ß was also sensitive to oxidative stress and exhibited a reduced ability to overcome plant immunity. Further examination demonstrated that MoSec61ß affected the normal secretion of the apoplastic effectors Bas4 and Slp1. In addition, ΔMosec61ß upregulated the level of ER-phagy. In conclusion, our results demonstrate the importance of the roles played by MoSec61ß in the fungal development and pathogenesis of M. oryzae.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Retículo Endoplasmático/imunologia , Proteínas Fúngicas/genética , Imunidade Vegetal , Canais de Translocação SEC/genética , Autofagia , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Oryza/microbiologia , Estresse Oxidativo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Virulência
12.
Space Med Med Eng (Beijing) ; 16(5): 344-8, 2003 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-14753234

RESUMO

OBJECTIVE: To study the aerodynamic characteristics of crewman's arms with or without protective devices in the status with raised legs or not. METHOD: The experiments were performed in an FL-24 transonic and supersonic wind tunnel, over Mach number range of 0.4-2.0, with 5 degrees-30 degrees angles of attack, 0 degrees - 90 degrees sideslip angles and Re number of (0.93-3.1) x 10(6). The test model was a 1/5-scale crewman/ejection seat combination. The aerodynamic characteristics of the various sections of crewman's arms were studied and analyzed. RESULT: The results showed that 1) The effect of raised leg on the aerodynamic characteristics of the crewman's arms was very evident, and was related to the status of leg raising; 2) The sideslip considerably increased aerodynamic loads on the crewman's arms, in particular when beta=50 degrees the loads was severe in the test; 3) The tested protective devices was valid, the effectiveness of wind deflector in protecting crewman's arms was evident; 4) A formula for calculating aerodynamic force acting on crewman's arms was presented. CONCLUSION: 1)The tested protective devices was valid, and the effectiveness of wind deflector in protecting crewman's arms was evident; 2) An aerodynamic basis for the development of crewman windblast protective device was presented; 3)The calculation formula presented is useful in estimating aerodynamic forces of crewman's arms.


Assuntos
Braço , Manequins , Equipamentos de Proteção , Vento , Aeronaves/instrumentação , Fenômenos Biomecânicos , Desenho de Equipamento , Humanos , Perna (Membro) , Masculino , Matemática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...