Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1345046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827732

RESUMO

Introduction: Recently, more and more research illustrated the importance of inducing CD4+ T helper type (Th)-1 dominant immunity for the success of tumor immunotherapy. Our prior studies revealed the crucial role of CD4+ Th1 cells in orchestrating systemic and durable antitumor immunity, which contributes to the satisfactory outcomes of the novel cryo-thermal therapy in the B16F10 tumor model. However, the mechanism for maintaining the cryo-thermal therapy-mediated durable CD4+ Th1-dominant response remains uncovered. Additionally, cryo-thermal-induced early-stage CD4+ Th1-dominant T cell response showed a correlation with the favorable prognosis in patients with colorectal cancer liver metastasis (CRCLM). We hypothesized that CD4+ Th1-dominant differentiation induced during the early stage post cryo-thermal therapy would affect the balance of CD4+ subsets at the late phase. Methods: To understand the role of interferon (IFN)-γ, the major effector of Th1 subsets, in maintaining long-term CD4+ Th1-prone polarization, B16F10 melanoma model was established in this study and a monoclonal antibody was used at the early stage post cryo-thermal therapy for interferon (IFN)-γ signaling blockade, and the influence on the phenotypic and functional change of immune cells was evaluated. Results: IFNγ at the early stage after cryo-thermal therapy maintained long-lasting CD4+ Th1-prone immunity by directly controlling Th17, Tfh, and Tregs polarization, leading to the hyperactivation of Myeloid-derived suppressor cells (MDSCs) represented by abundant interleukin (IL)-1ß generation, and thereby further amplifying Th1 response. Discussion: Our finding emphasized the key role of early-phase IFNγ abundance post cryo-thermal therapy, which could be a biomarker for better prognosis after cryo-thermal therapy.


Assuntos
Diferenciação Celular , Interferon gama , Melanoma Experimental , Camundongos Endogâmicos C57BL , Células Th1 , Animais , Células Th1/imunologia , Camundongos , Interferon gama/metabolismo , Diferenciação Celular/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Crioterapia/métodos , Linhagem Celular Tumoral , Feminino
2.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791188

RESUMO

In our previous studies, a novel cryothermal therapy (CTT) was developed to induce systemic long-term anti-tumor immunity. Natural killer (NK) cells were found to play an important role in CTT-induced long-term immune-mediated tumor control at the late stage after CTT, but the underlying mechanism is unclear. Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that have potent immunosuppressive effects on T cells and weaken the long-term benefits of immunotherapy. Consequently, overcoming MDSC immunosuppression is essential for maintaining the long-term efficacy of immunotherapy. In this study, we revealed that NK cells considerably diminish MDSC accumulation at the late stage after CTT, boost T cell production, increase T cell activation, and promote MDSC maturation, culminating in Th1-dominant CD4+ T cell differentiation and enhancing NK and CD8+ T cell cytotoxicity. Additionally, NK cells activate ERK signaling in MDSCs through NKG2D-ligand interaction to increase the activity of tumor necrosis factor (TNF)-α converting enzyme (TACE)-cleaved membrane TNF-α. Furthermore, Increased TACE activity releases more soluble TNF-α from MDSCs to promote MDSC maturation. In our studies, we propose a novel mechanism by which NK cells can overcome MDSC-induced immunosuppression and maintain CTT-induced persistent anti-tumor immunity, providing a prospective therapeutic option to improve the performance of cancer immunotherapy.


Assuntos
Células Matadoras Naturais , Células Supressoras Mieloides , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Fator de Necrose Tumoral alfa , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Ativação Linfocitária/imunologia , Diferenciação Celular , Ligantes , Proteína ADAM17/metabolismo
3.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108179

RESUMO

Immunosuppression plays a significant role in tumor recurrence and metastasis, ultimately causing poor survival outcomes. Overcoming immunosuppression and stimulating durable antitumor immunity are essential for tumor treatment. In our previous study, a novel cryo-thermal therapy involving liquid nitrogen freezing and radiofrequency heating could reduce the proportion of Myeloid-derived suppressor cells (MDSCs), but the remaining MDSCs produced IL-6 by the NF-κB pathway, resulting in an impaired therapeutic effect. Therefore, here we combined cryo-thermal therapy with anti-IL-6 treatment to target the MDSC-dominant immunosuppressive environment, thereby optimizing the efficacy of cryo-thermal therapy. We found that combinational treatment significantly increased the long-term survival rate of breast cancer-bearing mice. Mechanistic investigation revealed that combination therapy was capable of reducing the proportion of MDSCs in the spleen and blood while promoting their maturation, which resulted in increased Th1-dominant CD4+ T-cell differentiation and enhancement of CD8+ T-mediated tumor killing. In addition, CD4+ Th1 cells promoted mature MDSCs to produce IL-7 through IFN-γ, indirectly contributing to the maintenance of Th1-dominant antitumor immunity in a positive feedback loop. Our work suggests an attractive immunotherapeutic strategy targeting the MDSC-dominant immunosuppressive environment, which would offer exciting opportunities for highly immunosuppressive and unresectable tumors in the clinic.


Assuntos
Células Supressoras Mieloides , Animais , Camundongos , Recidiva Local de Neoplasia , Modelos Animais de Doenças , Células Th1 , Terapia Combinada
4.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36521929

RESUMO

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) can potently inhibit T-cell activity, promote growth and metastasis of tumor and contribute to resistance to immunotherapy. Targeting MDSCs to alleviate their protumor functions and immunosuppressive activities is intimately associated with cancer immunotherapy. Natural killer (NK) cells can engage in crosstalk with multiple myeloid cells to alter adaptive immune responses, triggering T-cell immunity. However, whether the NK-cell-MDSC interaction can modulate the T-cell immune response requires further study. Cryo-thermal therapy could induce the maturation of MDSCs by creating an acute inflammatory environment to elicit a CD4+ Th1-dominant immune response, but the mechanism regulating this process remains unclear. METHODS: NK cells were depleted and NKG2D was blocked with monoclonal antibodies in vivo. MDSCs, NK cells and T cells were assessed by flow cytometry and isolated by magnetic-activated cell sorting (MACS). MDSCs and NK cells were cocultured with T cells to determine their immunological function. The transcriptional profiles of MDSCs were measured by qRT-PCR and RNA-sequencing. Isolated NK cells and MDSCs by MACS were cocultured to study the viability and maturation of MDSCs regulated by NK cells. TIMER was used to comprehensively examine the immunological, clinical, and genomic features of tumors. RESULTS: NK-cell activation after cryo-thermal therapy decreased MDSC accumulation and reprogrammed immunosuppressive MDSCs toward a mature phenotype to promote T cell antitumor immunity. Furthermore, we discovered that NK cells could kill MDSCs via the NKG2D-NKG2DL axis and promote MDSC maturation by interferon gamma (IFN-γ) in response to NKG2D. In addition, CD4+ Th1-dominant antitumor immune response was dependent on NKG2D, which promoted the major histocompatibility complex Ⅱ pathway of MDSCs. High activated NK-cell infiltration and NKG2D level in tumors were positively correlated with better clinical outcomes. CONCLUSIONS: Cryo-thermal therapy induces effective CD4+ Th1-dominant antitumor immunity by activating NK cells to reprogram MDSCs, providing a promising therapeutic strategy for cancer immunotherapy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Interferon gama/metabolismo , Linfócitos T , Células Matadoras Naturais , Ativação Linfocitária
5.
Front Immunol ; 13: 1016776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389684

RESUMO

Targeting myeloid-derived suppressive cells (MDSCs) has been considered a potential strategy in tumor therapy. However, a single drug targeting MDSCs remains a challenge in the clinic. An increasing number of studies have shown that combination agents targeting MDSCs and immunotherapy may provide exciting new insights and avenues to explore in tumor therapy. In our previous study, a novel cryo-thermal therapy was developed for metastatic tumors that systematically activate innate and adaptive immunity. Moreover, cryo-thermal therapy was shown to dramatically decrease the levels of MDSCs and induce their differentiation toward potent antigen-presenting cells. However, the therapeutic effects of cryo-thermal therapy on the 4T1 mouse breast cancer model were still not satisfactory because of the high level of MDSCs before and after treatment. Therefore, in this study, we combined cryo-thermal therapy with all-trans retinoid acid (ATRA), a small molecule drug that can induce the inflammatory differentiation of MDSCs. We found that combination therapy notably upregulated the long-term survival rate of mice. Mechanically, combination therapy promoted the phenotype and functional maturation of MDSCs, efficiently decreasing suppressive molecule expression and inhibiting glutamine and fatty acid metabolism. Moreover, MDSCs at an early stage after combination therapy significantly decreased the proportions of Th2 and Treg subsets, which eventually resulted in Th1-dominant CD4+ T-cell differentiation, as well as enhanced cytotoxicity of CD8+ T cells and natural killer cells at the late stage. This study suggests a potential therapeutic strategy for combination ATRA treatment targeting MDSCs with cryo-thermal therapy to overcome the resistance of MDSC-induced immunosuppression in the clinic.


Assuntos
Células Supressoras Mieloides , Neoplasias , Camundongos , Animais , Retinoides/farmacologia , Linfócitos T CD8-Positivos , Células Mieloides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...