Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923651

RESUMO

Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a disease of durum and common wheat initiated by the recognition of pathogen-produced necrotrophic effectors (NEs) by specific wheat genes. The wheat gene Snn1 was previously cloned, and it encodes a wall-associated kinase that directly interacts with the NE SnTox1 leading to programmed cell death and ultimately the development of SNB. Here, sequence analysis of Snn1 from 114 accessions including diploid, tetraploid, and hexaploid wheat species revealed that some wheat lines possess two copies of Snn1 (designated Snn1-B1 and Snn1-B2) approximately 120 kb apart. Snn1-B2 evolved relatively recently as a paralog of Snn1-B1, and both genes have undergone diversifying selection. Three point mutations associated with the formation of the first SnTox1-sensitive Snn1-B1 allele from a primitive wild wheat were identified. Four subsequent and independent SNPs, three in Snn1-B1 and one in Snn1-B2, converted the sensitive alleles to insensitive forms. Protein modeling indicated these four mutations could abolish Snn1-SnTox1 compatibility either through destabilization of the Snn1 protein or direct disruption of the protein-protein interaction. A high-throughput marker was developed for the absent allele of Snn1, and it was 100% accurate at predicting SnTox1-insensitive lines in both durum and spring wheat. Results of this study increase our understanding of the evolution, diversity, and function of Snn1-B1 and Snn1-B2 genes and will be useful for marker-assisted elimination of these genes for better host resistance.

2.
Mol Breed ; 43(7): 54, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37337566

RESUMO

Septoria nodorum blotch (SNB) and tan spot, caused by the necrotrophic fungal pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis, respectively, often occur together as a leaf spotting disease complex on wheat (Triticum aestivum L.). Both pathogens produce necrotrophic effectors (NEs) that contribute to the development of disease. Here, genome-wide association analysis of a diverse panel of 264 winter wheat lines revealed novel loci on chromosomes 5A and 5B associated with sensitivity to the NEs SnTox3 and SnTox5 in addition to the known sensitivity genes for NEs Ptr/SnToxA, SnTox1, SnTox3, and SnTox5. Sensitivity loci for SnTox267 and Ptr ToxB were not detected. Evaluation of the panel with five P. nodorum isolates for SNB development indicated the Snn3-SnTox3 and Tsn1-SnToxA interactions played significant roles in disease development along with additional QTL on chromosomes 2A and 2D, which may correspond to the Snn7-SnTox267 interaction. For tan spot, the Tsc1-Ptr ToxC interaction was associated with disease caused by two isolates, and a novel QTL on chromosome 7D was associated with a third isolate. The Tsn1-ToxA interaction was associated with SNB but not tan spot. Therefore some, but not all, of the previously characterized host gene-NE interactions in these pathosystems play significant roles in disease development in winter wheat. Based on these results, breeders should prioritize the selection of resistance alleles at the Tsc1, Tsn1, Snn3, and Snn7 loci as well as the 2A and 7D QTL to obtain good levels of resistance to SNB and tan spot in winter wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01400-5.

3.
Phytopathology ; 113(10): 1967-1978, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37199466

RESUMO

Tan spot, caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr), is an important disease of durum and common wheat worldwide. Compared with common wheat, less is known about the genetics and molecular basis of tan spot resistance in durum wheat. We evaluated 510 durum lines from the Global Durum Wheat Panel (GDP) for sensitivity to the necrotrophic effectors (NEs) Ptr ToxA and Ptr ToxB and for reaction to Ptr isolates representing races 1 to 5. Overall, susceptible durum lines were most prevalent in South Asia, the Middle East, and North Africa. Genome-wide association analysis showed that the resistance locus Tsr7 was significantly associated with tan spot caused by races 2 and 3, but not races 1, 4, or 5. The NE sensitivity genes Tsc1 and Tsc2 were associated with susceptibility to Ptr ToxC- and Ptr ToxB-producing isolates, respectively, but Tsn1 was not associated with tan spot caused by Ptr ToxA-producing isolates, which further validates that the Tsn1-Ptr ToxA interaction does not play a significant role in tan spot development in durum. A unique locus on chromosome arm 2AS was associated with tan spot caused by race 4, a race once considered avirulent. A novel trait characterized by expanding chlorosis leading to increased disease severity caused by the Ptr ToxB-producing race 5 isolate DW5 was identified, and this trait was governed by a locus on chromosome 5B. We recommend that durum breeders select resistance alleles at the Tsr7, Tsc1, Tsc2, and the chromosome 2AS loci to obtain broad resistance to tan spot.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Mapeamento Cromossômico , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno/genética , Triticum/genética , Triticum/microbiologia
4.
Theor Appl Genet ; 135(11): 3685-3707, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35050394

RESUMO

Septoria nodorum blotch (SNB) is a foliar disease of wheat caused by the necrotrophic fungal pathogen Parastagonospora nodorum. Research over the last two decades has shown that the wheat-P. nodorum pathosystem mostly follows an inverse gene-for-gene model. The fungus produces necrotrophic effectors (NEs) that interact with specific host gene products encoded by dominant sensitivity (S) genes. When a compatible interaction occurs, a 'defense response' in the host leads to programmed cell death thereby provided dead/dying cells from which the pathogen, being a necrotroph, can acquire nutrients allowing it to grow and sporulate. To date, nine S gene-NE interactions have been characterized in this pathosystem. Five NE-encoding genes, SnTox1, SnTox3, SnToxA, SnTox5, and SnTox267, have been cloned along with three host S genes, Tsn1, Snn1, and Snn3-D1. Studies have shown that P. nodorum hijacks multiple and diverse host targets to cause disease. SNB resistance is often quantitative in nature because multiple compatible interactions usually occur concomitantly. NE gene expression plays a key role in disease severity, and the effect of each compatible interaction can vary depending on the other existing compatible interactions. Numerous SNB-resistance QTL have been identified in addition to the known S genes, and more research is needed to understand the nature of these resistance loci. Marker-assisted elimination of S genes through conventional breeding practices and disruption of S genes using gene editing techniques are both effective strategies for the development of SNB-resistant wheat cultivars, which will become necessary as the global demand for sustenance grows.


Assuntos
Doenças das Plantas , Triticum , Triticum/genética
5.
Plant J ; 106(3): 720-732, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33576059

RESUMO

Septoria nodorum blotch (SNB), a disease caused by the necrotrophic fungal pathogen Parastagonospora nodorum, is a threat to wheat (Triticum aestivum) production worldwide. Multiple inverse gene-for-gene interactions involving the recognition of necrotrophic effectors (NEs) by wheat sensitivity genes play major roles in causing SNB. One interaction involves the wheat gene Snn3 and the P. nodorum NE SnTox3. Here, we used a map-based strategy to clone the Snn3-D1 gene from Aegilops tauschii, the D-genome progenitor of common wheat. Snn3-D1 contained protein kinase and major sperm protein domains, both of which were essential for function as confirmed by mutagenesis. As opposed to other characterized interactions in this pathosystem, a compatible Snn3-D1-SnTox3 interaction was light-independent, and Snn3-D1 transcriptional expression was downregulated by light and upregulated by darkness. Snn3-D1 likely emerged in Ae. tauschii due to an approximately 218-kb insertion that occurred along the west bank of the Caspian Sea. The identification of this new class of NE sensitivity genes combined with the previously cloned sensitivity genes demonstrates that P. nodorum can take advantage of diverse host targets to trigger SNB susceptibility in wheat.


Assuntos
Ascomicetos/metabolismo , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Triticum/microbiologia , Aegilops/microbiologia , Suscetibilidade a Doenças/microbiologia , Genes de Plantas/genética , Filogenia , Proteínas de Plantas/genética , Pólen/enzimologia , Pólen/genética , Proteínas Quinases/genética , Triticum/genética , Triticum/metabolismo
6.
Plant J ; 102(2): 299-310, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31778224

RESUMO

The wheat AP2-like transcription factor gene Q has played a major role in domestication by conferring the free-threshing character and pleiotropically affecting numerous other traits. However, little information is known regarding the molecular mechanisms associated with the regulation of these traits by Q, especially for the structural determination of threshability. Here, transcriptome analysis of immature spike tissues in three lines nearly isogenic for Q revealed over 3000 differentially expressed genes (DEGs) involved in a number of pathways. Using phenotypic, microscopic, transcriptomic, and tissue-specific gene expression analyses, we demonstrated that Q governs threshability through extensive modification of wheat glumes including their structure, cell wall thickness, and chemical composition. Critical DEGs and pathways involved in secondary cell wall synthesis and regulation of the chemical composition of glumes were identified. We also showed that the mutation giving rise to the Q allele synchronized the expression of genes for micro-sporogenesis that affected pollen fertility, and may determine the final grain number for wheat spikes. Transcriptome dissection of genes and genetic pathways regulated by Q should further our understanding of wheat domestication and improvement.


Assuntos
Fatores de Transcrição/genética , Transcriptoma , Triticum/genética , Alelos , Domesticação , Grão Comestível , Fertilidade/genética , Perfilação da Expressão Gênica , Mutação , Especificidade de Órgãos , Fenótipo , Proteínas de Plantas/genética , Pólen/genética
7.
Plant Physiol ; 180(1): 420-434, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858234

RESUMO

The wheat-Parastagonospora nodorum pathosystem involves the recognition of pathogen-secreted necrotrophic effectors (NEs) by corresponding wheat NE sensitivity genes. This inverse gene-for-gene recognition leads to necrotrophic effector-triggered susceptibility and ultimately septoria nodorum blotch disease. Here, we used multiple pathogen isolates to individually evaluate the effects of the host gene-NE interactions Tan spot necrosis1-Stagonospora nodorum ToxinA (Tsn1-SnToxA), Stagonospora nodorum necrosis1-Stagonospora nodorum Toxin1 (Snn1-SnTox1), and Stagonospora nodorum necrosis3-B genome homeolog1-Stagonospora nodorum Toxin3 (Snn3-B1-SnTox3), alone and in various combinations, to determine the relative importance of these interactions in causing disease. Genetic analysis of a recombinant inbred wheat population inoculated separately with three P. nodorum isolates, all of which produce all three NEs, indicated that the Tsn1-SnToxA and Snn3-B1-SnTox3 interactions contributed to disease caused by all four isolates, but their effects varied and ranged from epistatic to additive. The Snn1-SnTox1 interaction was associated with increased disease for one isolate, but for other isolates, there was evidence that this interaction inhibited the expression of other host gene-NE interactions. RNA sequencing analysis in planta showed that SnTox1 was differentially expressed between these three isolates after infection. Further analysis of NE gene-knockout isolates showed that the effect of some interactions could be masked or inhibited by other compatible interactions, and the regulation of this occurs at the level of NE gene transcription. Collectively, these results show that the inverse gene-for-gene interactions leading to necrotrophic effector-triggered susceptibility in the wheat-P. nodorum pathosystem vary in their effects depending on the genetic backgrounds of the pathogen and host, and interplay among the interactions is complex and intricately regulated.


Assuntos
Ascomicetos/patogenicidade , Interações Hospedeiro-Patógeno/genética , Micotoxinas/genética , Proteínas de Plantas/genética , Triticum/microbiologia , Ascomicetos/genética , Mapeamento Cromossômico , Epistasia Genética , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Micotoxinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Triticum/genética
8.
Sci Adv ; 2(10): e1600822, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27819043

RESUMO

Necrotrophic pathogens live and feed on dying tissue, but their interactions with plants are not well understood compared to biotrophic pathogens. The wheat Snn1 gene confers susceptibility to strains of the necrotrophic pathogen Parastagonospora nodorum that produce the SnTox1 protein. We report the positional cloning of Snn1, a member of the wall-associated kinase class of receptors, which are known to drive pathways for biotrophic pathogen resistance. Recognition of SnTox1 by Snn1 activates programmed cell death, which allows this necrotroph to gain nutrients and sporulate. These results demonstrate that necrotrophic pathogens such as P. nodorum hijack host molecular pathways that are typically involved in resistance to biotrophic pathogens, revealing the complex nature of susceptibility and resistance in necrotrophic and biotrophic pathogen interactions with plants.


Assuntos
Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Triticum , Ascomicetos/genética , Ascomicetos/patogenicidade , Proteínas Fúngicas/genética , Triticum/enzimologia , Triticum/microbiologia
9.
G3 (Bethesda) ; 6(12): 4139-4150, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27777262

RESUMO

Tan spot and Septoria nodorum blotch (SNB) are important diseases of wheat caused by the necrotrophic fungi Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively. The P. tritici-repentis necrotrophic effector (NE) Ptr ToxB causes tan spot when recognized by the Tsc2 gene. The NE ToxA is produced by both pathogens and has been associated with the development of both tan spot and SNB when recognized by the wheat Tsn1 gene. Most work to study these interactions has been conducted in common wheat, but little has been done in durum wheat. Here, quantitative trait loci (QTL) analysis of a segregating biparental population indicated that the Tsc2-Ptr ToxB interaction plays a prominent role in the development of tan spot in durum. However, analysis of two biparental populations indicated that the Tsn1-ToxA interaction was not associated with the development of tan spot, but was strongly associated with the development of SNB. Pa. nodorum expressed ToxA at high levels in infected Tsn1 plants, whereas ToxA expression in P. tritici-repentis was barely detectable, suggesting that the differences in disease levels associated with the Tsn1-ToxA interaction were due to differences in pathogen expression of ToxA These and previous results together indicate that: (1) the effects of Tsn1-ToxA on tan spot in common wheat can range from nonsignificant to highly significant depending on the host genetic background; (2) Tsn1-ToxA is not a significant factor for tan spot development in durum wheat; and (3) Tsn1-ToxA plays a major role in SNB development in both common and durum wheat. Durum and common wheat breeders alike should strive to remove both Tsc2 and Tsn1 from their materials to achieve disease resistance.


Assuntos
Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Triticum/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ligação Genética , Marcadores Genéticos , Repetições de Microssatélites , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/microbiologia
10.
Mol Genet Genomics ; 291(1): 107-19, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26187026

RESUMO

Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a severe foliar and glume disease on durum and common wheat. Pathogen-produced necrotrophic effectors (NEs) are the major determinants for SNB on leaves. One such NE is SnTox3, which evokes programmed cell death and leads to disease when recognized by the wheat Snn3-B1 gene. Here, we developed saturated genetic linkage maps of the Snn3-B1 region using two F2 populations derived from the SnTox3-sensitive line Sumai 3 crossed with different SnTox3-insensitive lines. Markers were identified and/or developed from various resources including previously mapped simple sequence repeats, bin-mapped expressed sequence tags, single nucleotide polymorphisms, and whole genome survey sequences. Subsequent high-resolution mapping of the Snn3-B1 locus in 5600 gametes delineated the gene to a 1.5 cM interval. Analysis of micro-colinearity of the Snn3-B1 region indicated that it was highly disrupted compared to rice and Brachypodium distachyon. The screening of a collection of durum and common wheat cultivars with tightly linked markers indicated they are not diagnostic for the presence of Snn3-B1, but can be useful for marker-assisted selection if the SnTox3 reactions of lines are first determined. Finally, we developed an ethyl methanesulfonate-induced mutant population of Sumai 3 where the screening of 408 M2 families led to the identification of 17 SnTox3-insensitive mutants. These mutants along with the markers and high-resolution map developed in this research provide a strong foundation for the map-based cloning of Snn3-B1, which will broaden our understanding of the wheat-P. nodorum system and plant-necrotrophic pathogen interactions in general.


Assuntos
Genes de Plantas/genética , Marcadores Genéticos/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia , Ascomicetos/genética , Brachypodium/genética , Brachypodium/microbiologia , Mapeamento Cromossômico/métodos , Etiquetas de Sequências Expressas/metabolismo , Proteínas Fúngicas/genética , Genoma de Planta/genética , Repetições de Microssatélites/genética , Mutação/genética , Micotoxinas/genética , Oryza/genética , Oryza/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
11.
Theor Appl Genet ; 127(11): 2333-48, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25186168

RESUMO

KEY MESSAGE: Development of a high-density SNP map and evaluation of QTL shed light on domestication events in tetraploid wheat and the potential utility of cultivated emmer wheat for durum wheat improvement. Cultivated emmer wheat (Triticum turgidum ssp. dicoccum) is tetraploid and considered as one of the eight founder crops that spawned the Agricultural Revolution about 10,000 years ago. Cultivated emmer has non-free-threshing seed and a somewhat fragile rachis, but mutations in genes governing these and other agronomic traits occurred that led to the formation of today's fully domesticated durum wheat (T. turgidum ssp. durum). Here, we evaluated a population of recombinant inbred lines (RILs) derived from a cross between a cultivated emmer accession and a durum wheat variety. A high-density single nucleotide polymorphism (SNP)-based genetic linkage map consisting of 2,593 markers was developed for the identification of quantitative trait loci. The major domestication gene Q had profound effects on spike length and compactness, rachis fragility, and threshability as expected. The cultivated emmer parent contributed increased spikelets per spike, and the durum parent contributed higher kernel weight, which led to the identification of some RILs that had significantly higher grain weight per spike than either parent. Threshability was governed not only by the Q locus, but other loci as well including Tg-B1 on chromosome 2B and a putative Tg-A1 locus on chromosome 2A indicating that mutations in the Tg loci occurred during the transition of cultivated emmer to the fully domesticated tetraploid. These results not only shed light on the events that shaped wheat domestication, but also demonstrate that cultivated emmer is a useful source of genetic variation for the enhancement of durum varieties.


Assuntos
Ligação Genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Produtos Agrícolas/genética , Cruzamentos Genéticos , Genótipo , Fenótipo , Triticum/crescimento & desenvolvimento
12.
Mol Genet Genomics ; 289(4): 641-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24652470

RESUMO

The development and morphology of the wheat spike is important because the spike is where reproduction occurs and it holds the grains until harvest. Therefore, genes that influence spike morphology are of interest from both theoretical and practical stand points. When substituted for the native chromosome 2A in the tetraploid Langdon (LDN) durum wheat background, the Triticum turgidum ssp. dicoccoides chromosome 2A from accession IsraelA confers a short, compact spike with fewer spikelets per spike compared to LDN. Molecular mapping and quantitative trait loci (QTL) analysis of these traits in a homozygous recombinant population derived from LDN × the chromosome 2A substitution line (LDNIsA-2A) indicated that the number of spikelets per spike and spike length were controlled by linked, but different, loci on the long arm of 2A. A QTL explaining most of the variation for spike compactness coincided with the QTL for spike length. Comparative mapping indicated that the QTL for number of spikelets per spike overlapped with a previously mapped QTL for Fusarium head blight susceptibility. The genes governing spike length and compactness were not orthologous to either sog or C, genes known to confer compact spikes in diploid and hexaploid wheat, respectively. Mapping and sequence analysis indicated that the gene governing spike length and compactness derived from wild emmer could be an ortholog of the barley Cly1/Zeo gene, which research indicates is an AP2-like gene pleiotropically affecting cleistogamy, flowering time, and rachis internode length. This work provides researchers with knowledge of new genetic loci and associated markers that may be useful for manipulating spike morphology in durum wheat.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Inflorescência/genética , Locos de Características Quantitativas/genética , Triticum/genética , Sequência de Aminoácidos , Sequência de Bases , Ligação Genética , Loci Gênicos , Marcadores Genéticos , Genótipo , Inflorescência/anatomia & histologia , Dados de Sequência Molecular , Fenótipo , Poliploidia , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência , Triticum/anatomia & histologia
13.
Gene ; 542(2): 198-208, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24657062

RESUMO

The domestication of wheat was instrumental in spawning the civilization of humankind, and it occurred through genetic mutations that gave rise to types with non-fragile rachises, soft glumes, and free-threshing seed. Wild emmer (Triticum turgidum ssp. dicoccoides), the tetraploid AB-genome progenitor of domesticated wheat has genes that confer tenacious glumes (Tg) that underwent genetic mutations to give rise to free-threshing wheat. Here, we evaluated disomic substitution lines involving chromosomes 2A and 2B of wild emmer accessions substituted for homologous chromosomes in tetraploid and hexaploid backgrounds. The results suggested that both chromosomes 2A and 2B of wild emmer possess genes that inhibit threshability. A population of recombinant inbred lines derived from the tetraploid durum wheat variety Langdon crossed with a Langdon - T. turgidum ssp. dicoccoides accession PI 481521 chromosome 2B disomic substitution line was used to develop a genetic linkage map of 2B, evaluate the genetics of threshability, and map the gene derived from PI 481521 that inhibited threshability. A 2BS linkage map comprised of 58 markers was developed, and markers delineated the gene to a 2.3 cM interval. Comparative analysis with maps containing the tenacious glume gene Tg-D1 on chromosome arm 2 DS from Aegilops tauschii, the D genome progenitor of hexaploid wheat, revealed that the gene inhibiting threshability in wild emmer was homoeologous to Tg-D1 and therefore designated Tg-B1. Comparative analysis with rice and Brachypodium distachyon indicated a high level of divergence and poorly conserved colinearity, particularly near the Tg-B1 locus. These results provide a foundation for further studies involving Tg-B1, which, together with Tg-D1, had profound influences on wheat domestication.


Assuntos
Cromossomos de Plantas , Genes de Plantas , Triticum/genética , Mapeamento Cromossômico , Ligação Genética , Endogamia , Oryza/genética , Fenótipo , Poaceae/genética , Poliploidia , Locos de Características Quantitativas
14.
PLoS Pathog ; 8(1): e1002467, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22241993

RESUMO

The wheat pathogen Stagonospora nodorum produces multiple necrotrophic effectors (also called host-selective toxins) that promote disease by interacting with corresponding host sensitivity gene products. SnTox1 was the first necrotrophic effector identified in S. nodorum, and was shown to induce necrosis on wheat lines carrying Snn1. Here, we report the molecular cloning and validation of SnTox1 as well as the preliminary characterization of the mechanism underlying the SnTox1-Snn1 interaction which leads to susceptibility. SnTox1 was identified using bioinformatics tools and verified by heterologous expression in Pichia pastoris. SnTox1 encodes a 117 amino acid protein with the first 17 amino acids predicted as a signal peptide, and strikingly, the mature protein contains 16 cysteine residues, a common feature for some avirulence effectors. The transformation of SnTox1 into an avirulent S. nodorum isolate was sufficient to make the strain pathogenic. Additionally, the deletion of SnTox1 in virulent isolates rendered the SnTox1 mutated strains avirulent on the Snn1 differential wheat line. SnTox1 was present in 85% of a global collection of S. nodorum isolates. We identified a total of 11 protein isoforms and found evidence for strong diversifying selection operating on SnTox1. The SnTox1-Snn1 interaction results in an oxidative burst, DNA laddering, and pathogenesis related (PR) gene expression, all hallmarks of a defense response. In the absence of light, the development of SnTox1-induced necrosis and disease symptoms were completely blocked. By comparing the infection processes of a GFP-tagged avirulent isolate and the same isolate transformed with SnTox1, we conclude that SnTox1 may play a critical role during fungal penetration. This research further demonstrates that necrotrophic fungal pathogens utilize small effector proteins to exploit plant resistance pathways for their colonization, which provides important insights into the molecular basis of the wheat-S. nodorum interaction, an emerging model for necrotrophic pathosystems.


Assuntos
Ascomicetos/fisiologia , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas/biossíntese , Triticum/metabolismo , Resistência à Doença/fisiologia , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Proteínas de Plantas/genética , Sinais Direcionadores de Proteínas/fisiologia , Explosão Respiratória/genética , Triticum/genética
15.
Proc Natl Acad Sci U S A ; 108(46): 18737-42, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22042872

RESUMO

The Q gene encodes an AP2-like transcription factor that played an important role in domestication of polyploid wheat. The chromosome 5A Q alleles (5AQ and 5Aq) have been well studied, but much less is known about the q alleles on wheat homoeologous chromosomes 5B (5Bq) and 5D (5Dq). We investigated the organization, evolution, and function of the Q/q homoeoalleles in hexaploid wheat (Triticum aestivum L.). Q/q gene sequences are highly conserved within and among the A, B, and D genomes of hexaploid wheat, the A and B genomes of tetraploid wheat, and the A, S, and D genomes of the diploid progenitors, but the intergenic regions of the Q/q locus are highly divergent among homoeologous genomes. Duplication of the q gene 5.8 Mya was likely followed by selective loss of one of the copies from the A genome progenitor and the other copy from the B, D, and S genomes. A recent V(329)-to-I mutation in the A lineage is correlated with the Q phenotype. The 5Bq homoeoalleles became a pseudogene after allotetraploidization. Expression analysis indicated that the homoeoalleles are coregulated in a complex manner. Combined phenotypic and expression analysis indicated that, whereas 5AQ plays a major role in conferring domestication-related traits, 5Dq contributes directly and 5Bq indirectly to suppression of the speltoid phenotype. The evolution of the Q/q loci in polyploid wheat resulted in the hyperfunctionalization of 5AQ, pseudogenization of 5Bq, and subfunctionalization of 5Dq, all contributing to the domestication traits.


Assuntos
Cromossomos/genética , Evolução Molecular , Genoma de Planta , Poliploidia , Triticum/genética , Regiões 3' não Traduzidas , Alelos , Éxons , Duplicação Gênica , Íntrons , Modelos Genéticos , Mutação , Fenótipo , Ploidias , RNA Mensageiro/metabolismo
16.
Mol Plant Microbe Interact ; 24(12): 1419-26, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21770771

RESUMO

Most research on host?pathogen interactions is focused on mechanisms of resistance, but less is known regarding mechanisms of susceptibility. The wheat?Stagonospora nodorum pathosystem involves pathogen-produced effectors, also known as host-selective toxins, that interact with corresponding dominant host genes to cause disease. Recognition of the S. nodorum effectors SnToxA and SnTox2 is mediated by the wheat genes Tsn1 and Snn2, respectively. Here, we inoculated a population of wheat recombinant inbred lines that segregates for Tsn1 and Snn2 with conidia from two S. nodorum isolates, Sn4 and Sn5, which both produce SnToxA and SnTox2 to compare the effects of compatible Tsn1?SnToxA and Snn2?SnTox2 interactions between the two isolates. Genetic analysis revealed that the two interactions contribute equally to disease caused by isolate Sn4 but the Tsn1?SnToxA interaction contributed substantially more to disease conferred by Sn5 than did the Snn2?SnTox2 interaction. Sequence analysis of the SnToxA locus from Sn4 and Sn5 indicated that they were 99.5% identical, with no polymorphisms in the coding region or the predicted promoters. Analysis of transcription levels showed that expression levels of SnToxA peaked at 26 h postinoculation for both isolates but SnToxA expression in Sn5 was more than twice that of Sn4. This work demonstrates that necrotrophic effectors of different isolates can be expressed at different levels in planta, and that higher levels of expression lead to increased levels of disease in the wheat?S. nodorum pathosystem.


Assuntos
Ascomicetos/patogenicidade , Interações Hospedeiro-Patógeno/genética , Micotoxinas/metabolismo , Doenças das Plantas/genética , Triticum/microbiologia , Ascomicetos/genética , Ascomicetos/metabolismo , Sequência de Bases , Suscetibilidade a Doenças , Genes de Plantas/genética , Genótipo , Dados de Sequência Molecular , Micotoxinas/genética , Micotoxinas/isolamento & purificação , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Locos de Características Quantitativas/genética , Análise de Regressão , Alinhamento de Sequência , Análise de Sequência de DNA , Esporos Fúngicos/fisiologia , Fatores de Tempo , Triticum/genética
17.
Plant J ; 65(1): 27-38, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21175887

RESUMO

The pathogen Stagonospora nodorum produces multiple effectors, also known as host-selective toxins (HSTs), that interact with corresponding host sensitivity genes in an inverse gene-for-gene manner to cause the disease Stagonospora nodorum blotch (SNB) in wheat. In this study, a sensitivity gene was identified in Aegilops tauschii, the diploid D-genome donor of common wheat. The gene was mapped to the short arm of chromosome 5D and mediated recognition of the effector SnTox3, which was previously shown to be recognized by the wheat gene Snn3 on chromosome arm 5BS. Comparative mapping suggested that Snn3 and the gene on 5DS are probably homoeologous and derived from a common ancestor. Therefore, we propose to designate these genes as Snn3-B1 and Snn3-D1, respectively. Compatible Snn3-D1-SnTox3 interactions resulted in more severe necrosis in both effector infiltration and spore inoculation experiments than compatible Snn3-B1-SnTox3 interactions, indicating that Snn3-B1 and Snn3-D1 may have different affinities in SnTox3 recognition or signal transduction. Wheat bin-mapped expressed sequence tags and good levels of collinearity among the wheat Snn3 regions, rice (Oryza sativa), and Brachypodium distachyon were exploited for saturation and fine mapping of the Snn3-D1 locus. Markers delineating the Snn3-D1 locus to a 1.4 cM interval will be useful for initiating positional cloning. Further characterization of how these homoeologous genes mediate recognition of the same pathogen effector should enhance understanding of host manipulation by necrotrophic pathogens in causing disease.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Triticum/microbiologia , Brachypodium/genética , Frequência do Gene , Ligação Genética , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Triticum/genética
18.
Proc Natl Acad Sci U S A ; 107(30): 13544-9, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20624958

RESUMO

Plant disease resistance is often conferred by genes with nucleotide binding site (NBS) and leucine-rich repeat (LRR) or serine/threonine protein kinase (S/TPK) domains. Much less is known about mechanisms of susceptibility, particularly to necrotrophic fungal pathogens. The pathogens that cause the diseases tan spot and Stagonospora nodorum blotch on wheat produce effectors (host-selective toxins) that induce susceptibility in wheat lines harboring corresponding toxin sensitivity genes. The effector ToxA is produced by both pathogens, and sensitivity to ToxA is governed by the Tsn1 gene on wheat chromosome arm 5BL. Here, we report the cloning of Tsn1, which was found to have disease resistance gene-like features, including S/TPK and NBS-LRR domains. Mutagenesis revealed that all three domains are required for ToxA sensitivity, and hence disease susceptibility. Tsn1 is unique to ToxA-sensitive genotypes, and insensitive genotypes are null. Sequencing and phylogenetic analysis indicated that Tsn1 arose in the B-genome diploid progenitor of polyploid wheat through a gene-fusion event that gave rise to its unique structure. Although Tsn1 is necessary to mediate ToxA recognition, yeast two-hybrid experiments suggested that the Tsn1 protein does not interact directly with ToxA. Tsn1 transcription is tightly regulated by the circadian clock and light, providing further evidence that Tsn1-ToxA interactions are associated with photosynthesis pathways. This work suggests that these necrotrophic pathogens may thrive by subverting the resistance mechanisms acquired by plants to combat other pathogens.


Assuntos
Ascomicetos/fisiologia , Genes de Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Triticum/microbiologia , Sequência de Aminoácidos , Ascomicetos/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Clonagem Molecular , DNA de Plantas/química , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Dados de Sequência Molecular , Mutação , Micotoxinas/genética , Micotoxinas/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Triticum/classificação , Técnicas do Sistema de Duplo-Híbrido
19.
Funct Integr Genomics ; 8(2): 149-64, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18210171

RESUMO

Brachypodium, a wild temperate grass with a small genome, was recently proposed as a new model organism for the large-genome grasses. In this study, we evaluated gene content and microcolinearity between diploid wheat (Triticum monococcum), Brachypodium sylvaticum, and rice at a local genomic region harboring the major wheat domestication gene Q. Gene density was much lower in T. monococcum (one per 41 kb) because of gene duplication and an abundance of transposable elements within intergenic regions as compared to B. sylvaticum (one per 14 kb) and rice (one per 10 kb). For the Q gene region, microcolinearity was more conserved between wheat and rice than between wheat and Brachypodium because B. sylvaticum contained two genes apparently not present within the orthologous regions of T. monococcum and rice. However, phylogenetic analysis of Q and leukotriene A-4 hydrolase-like gene orthologs, which were colinear among the three species, showed that Brachypodium is more closely related to wheat than rice, which agrees with previous studies. We conclude that Brachypodium will be a useful tool for gene discovery, comparative genomics, and the study of evolutionary relationships among the grasses but will not preclude the need to conduct large-scale genomics experiments in the Triticeae.


Assuntos
Genes de Plantas , Genoma de Planta , Oryza/genética , Poaceae/genética , Triticum/genética , Sequência de Aminoácidos , Epóxido Hidrolases/química , Epóxido Hidrolases/classificação , Epóxido Hidrolases/genética , Evolução Molecular , Genômica , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Sintenia
20.
Plant Physiol ; 146(2): 682-93, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18065563

RESUMO

Recent work suggests that the Stagonospora nodorum-wheat pathosystem is controlled by host-selective toxins (HSTs; SnToxA, SnTox1, and SnTox2) that interact directly or indirectly with dominant host genes (Tsn1, Snn1, and Snn2) to induce disease. Here we describe and characterize a novel HST designated SnTox3, and the corresponding wheat sensitivity/susceptibility gene identified on chromosome arm 5BS, which we designated as Snn3. SnTox3 is a proteinaceous necrosis-inducing toxin between 10 and 30 kD in size. The S. nodorum isolates Sn1501 (SnToxA-, SnTox2+, and SnTox3+), SN15 (SnToxA+, SnTox2+, and SnTox3+), and SN15KO18, a strain of SN15 with a disrupted form of SnToxA, were evaluated on a population of wheat recombinant inbred lines. A compatible Snn3-SnTox3 interaction played a significant role in the development of disease caused by isolates Sn1501 and SN15KO18, with Snn2 being epistatic to Snn3. Snn3 was not significantly associated with disease caused by SN15 presumably due to the major effects observed for Snn2 and Tsn1, which were largely additive. This work introduces a fourth HST produced by S. nodorum and builds on the notion that the S. nodorum-wheat pathosystem is largely based on multiple host-toxin interactions that follow an inverse gene-for-gene scenario.


Assuntos
Ascomicetos/metabolismo , Genes de Plantas/fisiologia , Micotoxinas/metabolismo , Triticum/genética , Ascomicetos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma Fúngico , Interações Hospedeiro-Patógeno , Micotoxinas/química , Micotoxinas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...