Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 194(3): 1593-1610, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37956067

RESUMO

Proper seed development is essential for achieving grain production, successful seed germination, and seedling establishment in maize (Zea mays). In the past few decades, pentatricopeptide repeat (PPR) proteins have been proven to play an essential role in regulating the development of maize kernels through posttranscriptional RNA modification of mitochondrial genes. However, the underlying mechanisms remain largely unknown. Here, we characterized a mutant of DEFECTIVE KERNEL 56 (DEK56) with defective kernels that exhibited arrested development of both the embryo and endosperm. Accordingly, we isolated DEK56 through a map-based cloning strategy and found that it encoded an E subgroup PPR protein located in the mitochondria. Dysfunction of DEK56 resulted in altered cytidine (C)-to-uridine (U) editing efficiency at 48 editing sites across 21 mitochondrial transcripts. Notably, the editing efficiency of the maturase-related (matR)-1124 site was substantially reduced or abolished in the dek56 mutant. Furthermore, we found that the splicing efficiency of NADH dehydrogenase subunit 4 (nad4) Introns 1 and 3 was substantially reduced in dek56 kernels, which might be a consequence of the defective MatR function. Through a protein-protein interaction test, we hypothesized that DEK56 carries out its function by recruiting the PPR-DYW protein PPR motif, coiled-coil, and DYW domain-containing protein 1 (PCW1). This interaction is facilitated by Multiple Organellar RNA Editing Factors (ZmMORFs) and Glutamine-Rich Protein 23 (ZmGRP23). Based on these findings, we developed a working model of PPR-mediated mitochondrial processing that plays an essential role in the development of maize kernels. The present study will further broaden our understanding of PPR-mediated seed development and provide a theoretical basis for maize improvement.


Assuntos
Proteínas de Plantas , Zea mays , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mitocondrial/metabolismo , Sementes/metabolismo , Endosperma/metabolismo
2.
J Integr Plant Biol ; 65(5): 1344-1355, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36621865

RESUMO

The Gametophyte factor1 (Ga1) locus in maize confers unilateral cross-incompatibility (UCI), and it is controlled by both pollen and silk-specific determinants. Although the Ga1 locus has been reported for more than a century and is widely utilized in maize breeding programs, only the pollen-specific ZmGa1P has been shown to function as a male determinant; thus, the genomic structure of the Ga1 locus and all the determinants that control UCI at this locus have not yet been fully characterized. Here, we used map-based cloning to confirm the determinants of UCI at the Ga1 locus and maize pan-genome sequence data to characterize the genomic structure of the Ga1 locus. The Ga1 locus comprises one silk-expressed pectin methylesterase gene (PME) (ZmGa1F) and eight pollen-expressed PMEs (ZmGa1P and ZmGa1PL1-7). Knockout of ZmGa1F in Ga1/Ga1 lines leads to the complete loss of the female barrier function. The expression of individual ZmGa1PL genes in a ga1/ga1 background endows ga1 pollen with the ability to overcome the female barrier of the Ga1 locus. These findings, combined with genomic data and genetic analyses, indicate that the Ga1 locus is modulated by a single female determinant and multiple male determinants, which are tightly linked. The results of this study provide valuable insights into the genomic structure of the Ga2 and Tcb1 loci and will aid applications of these loci in maize breeding programs.


Assuntos
Zea mays , Células Germinativas Vegetais , Melhoramento Vegetal , Pólen/genética , Zea mays/genética , Zea mays/metabolismo
3.
Sci China Life Sci ; 66(3): 595-601, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36190647

RESUMO

Hybrid seed production technology (SPT) using genic recessive male sterility is of great importance in maize breeding. Here, we report a novel SPT based on a maize unilateral cross-incompatibility gene ZmGa1F with an extremely low transgene transmission rate (TTR). Proper pollen-specific ZmGa1F expression severely inhibits pollen tube growth leading to no fertilization. The maintainer line harbors a transgene cassette in an ipe1 male sterile background containing IPE1 to restore ipe1 male fertility, ZmGa1F to prevent transgenic pollen escape, the red fluorescence protein encoding gene DsRed2 for the separation of male sterile and fertile seeds, and the herbicide-resistant gene Bar for transgenic plant selection. When the maintainer line is selfed, gametes of ipe1/transgene and ipe1/- genotypes are produced, and pollen of the ipe1/transgene genotype is not able to fertilize female gametes due to pollen tube growth inhibition by ZmGa1F. Subsequently, seeds of ipe1/ipe1 and ipe1/transgene genotypes are produced at a 1:1 ratio and could be separated easily by fluorescence-based seed sorting. Not a single seed emitting fluorescence is detected in more than 200,000 seeds examined demonstrating that the pollen-tube-inhibition (PTI)-based TTR is lower than what has been reported for similar technologies to date. This PTI-based SPT shows promising potential for future maize hybrid seed production.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/metabolismo , Plantas Geneticamente Modificadas/genética , Transgenes , Sementes/genética
5.
Nat Commun ; 13(1): 1993, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422051

RESUMO

Maize unilateral cross-incompatibility (UCI) that causes non-Mendelian segregation ratios has been documented for more than a century. Ga1, Ga2, and Tcb1 are three major UCI systems, described but not fully understood. Here, we report comprehensive genetic studies on the Ga2 locus and map-based cloning of the tightly linked male determinant ZmGa2P and female determinant ZmGa2F that govern pollen-silk compatibility among different maize genotypes. Both determinants encode putative pectin methylesterases (PME). A significantly higher degree of methyl esterification is detected in the apical region of pollen tubes growing in incompatible silks. No direct interaction between ZmGa2P and ZmGa2F is detected in the yeast two-hybrid system implying a distinct mechanism from that of self-incompatibility (SI). We also demonstrate the feasibility of Ga2 as a reproductive barrier in commercial breeding programs and stacking Ga2 with Ga1 could strengthen the UCI market potentials.


Assuntos
Melhoramento Vegetal , Zea mays , Genes de Plantas/genética , Proteínas de Plantas/genética , Pólen/genética , Tubo Polínico/genética , Zea mays/genética
6.
Plant Cell ; 34(6): 2222-2241, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35294020

RESUMO

Ear length (EL) is a key trait that contributes greatly to grain yield in maize (Zea mays). While numerous quantitative trait loci for EL have been identified, few causal genes have been studied in detail. Here we report the characterization of ear apical degeneration1 (ead1) exhibiting strikingly shorter ears and the map-based cloning of the casual gene EAD1. EAD1 is preferentially expressed in the xylem of immature ears and encodes an aluminum-activated malate transporter localizing to the plasma membrane. We show that EAD1 is a malate efflux transporter and loss of EAD1 leads to lower malate contents in the apical part of developing inflorescences. Exogenous injections of malate rescued the shortened ears of ead1. These results demonstrate that EAD1 plays essential roles in regulating maize ear development by delivering malate through xylem vessels to the apical part of the immature ear. Overexpression of EAD1 led to greater EL and kernel number per row and the EAD1 genotype showed a positive association with EL in two different genetic segregating populations. Our work elucidates the critical role of EAD1 in malate-mediated female inflorescence development and provides a promising genetic resource for enhancing maize grain yield.


Assuntos
Inflorescência , Zea mays , Mapeamento Cromossômico/métodos , Grão Comestível/genética , Inflorescência/genética , Malatos/metabolismo , Fenótipo , Locos de Características Quantitativas , Zea mays/metabolismo
7.
Plants (Basel) ; 11(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35214886

RESUMO

Seed germination is the crucial stage in plant life cycle. Rapid and uniform germination plays an essential role in plant development and grain yield improvement. However, the molecular mechanism underlying seed germination speed is largely unknown due to the complexity of the dynamic process and the difficulty in phenotyping. Here, we conducted a time-series comparative transcriptome study of two elite maize inbred lines, 72-3 and F9721, with striking difference in seed germination speed, and identified a major locus underlying maize germination speed through genome-wide association analysis (GWAS) of an F2 segregation population. Comparative transcriptome study identified 12 h after imbibition (HAI) as the critical stage responsible for the variation in germination speed. The differentially expressed genes (DEGs) between 72-3 and F9721 were mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, oxidoreductase activity pathways, hormone signal transduction, and amino acid transporter activity pathways. GWAS revealed that germination speed was controlled by a major locus on chromosome 1 with the leading SNP as AX-91332814, explaining 10.63% of phenotypic variation. A total of 87 proposed protein-coding genes surrounding the locus were integrated with DEGs. Combined with evidence from the gene expression database and gene synteny with other model species, we finally anchored three genes as the likely candidates regulating germination speed in maize. This study provides clues for the further exploration of genes controlling the maize seed germination speed, thus facilitating breeding of rapid germinated elite lines through marker assistant selection.

8.
Plant Physiol ; 184(3): 1438-1454, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913046

RESUMO

Anther cuticle and pollen exine are two physical barriers protecting plant reproductive cells against environmental stresses; defects in either often cause male sterility. Here, we report the characterization of a male-sterile mutant irregular pollen exine2 (ipe2) of maize (Zea mays), which displays shrunken anthers and no starch accumulation in mature pollen grains. We cloned the causal gene IPE2 and confirmed its role in male fertility in maize with a set of complementary experiments. IPE2 is specifically expressed in maize developing anthers during stages 8 to 9 and encodes an endoplasmic-reticulum-localized GDSL lipase. Dysfunction of IPE2 resulted in delayed degeneration of tapetum and middle layer, leading to defective formation of anther cuticle and pollen exine, and complete male sterility. Aliphatic metabolism was greatly altered, with the contents of lipid constituents, especially C16/C18 fatty acids and their derivatives, significantly reduced in ipe2 developing anthers. Our study elucidates GDSL function in anther and pollen development and provides a promising genetic resource for breeding hybrid maize.


Assuntos
Infertilidade das Plantas/genética , Pólen/anatomia & histologia , Pólen/crescimento & desenvolvimento , Pólen/genética , Zea mays/anatomia & histologia , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação
9.
Nat Commun ; 9(1): 3678, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202064

RESUMO

Unilateral cross-incompatibility (UCI) is a unidirectional inter/intra-population reproductive barrier when both parents are self-compatible. Maize Gametophyte factor1 (Ga1) is an intraspecific UCI system and has been utilized in breeding. However, the mechanism underlying maize UCI specificity has remained mysterious for decades. Here, we report the cloning of ZmGa1P, a pollen-expressed PECTIN METHYLESTERASE (PME) gene at the Ga1 locus that can confer the male function in the maize UCI system. Homozygous transgenic plants expressing ZmGa1P in a ga1 background can fertilize Ga1-S plants and can be fertilized by pollen of ga1 plants. ZmGa1P protein is predominantly localized to the apex of growing pollen tubes and may interact with another pollen-specific PME protein, ZmPME10-1, to maintain the state of pectin methylesterification required for pollen tube growth in Ga1-S silks. Our study discloses a PME-mediated UCI mechanism and provides a tool to manipulate hybrid breeding.


Assuntos
Hidrolases de Éster Carboxílico/genética , Proteínas de Plantas/genética , Tubo Polínico/crescimento & desenvolvimento , Polinização , Zea mays/genética , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Cruzamentos Genéticos , Teste de Complementação Genética , Estudo de Associação Genômica Ampla , Haplótipos , Melhoramento Vegetal , Plantas Geneticamente Modificadas/genética , Pólen/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
10.
PLoS One ; 12(3): e0174425, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28355304

RESUMO

Sucrose non-fermenting 1-related protein kinases (SnRKs) comprise a major family of signaling genes in plants and are associated with metabolic regulation, nutrient utilization and stress responses. This gene family has been proposed to be involved in sucrose signaling. In the present study, we cloned three copies of the TaSnRK2.10 gene from bread wheat on chromosomes 4A, 4B and 4D. The coding sequence (CDS) is 1086 bp in length and encodes a protein of 361 amino acids that exhibits functional domains shared with SnRK2s. Based on the haplotypes of TaSnRK2.10-4A (Hap-4A-H and Hap-4A-L), a cleaved amplified polymorphic sequence (CAPS) marker designated TaSnRK2.10-4A-CAPS was developed and mapped between the markers D-1092101 and D-100014232 using a set of recombinant inbred lines (RILs). The TaSnRK2.10-4B alleles (Hap-4B-G and Hap-4B-A) were transformed into allele-specific PCR (AS-PCR) markers TaSnRK2.10-4B-AS1 and TaSnRK2.10-4B-AS2, which were located between the markers D-1281577 and S-1862758. No diversity was found for TaSnRK2.10-4D. An association analysis using a natural population consisting of 128 winter wheat varieties in multiple environments showed that the thousand grain weight (TGW) and spike length (SL) of Hap-4A-H were significantly higher than those of Hap-4A-L, but pant height (PH) was significantly lower.


Assuntos
Produtos Agrícolas/genética , Genes de Plantas , Proteínas de Plantas/genética , Proteínas Quinases/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Clonagem Molecular , Produtos Agrícolas/crescimento & desenvolvimento , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Estudos de Associação Genética , Haplótipos , Fenótipo , Regiões Promotoras Genéticas , Triticum/crescimento & desenvolvimento
11.
Cytotechnology ; 63(5): 437-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21748262

RESUMO

Nanotechnology has emerged to be one of the most powerful engineering approaches in the past half a century. Nanotechnology brought nanomaterials for biomedical use with diverse applications. In the present manuscript we summarize the recent progress in adopting nanobiomaterials for bone healing and repair approaches. We first discuss the use of nanophase surface modification in manipulating metals and ceramics for bone implantation, and then the use of polymers as nanofiber scaffolds in bone repair. Finally we briefly present the potential use of the nanoparticle delivery system as adjunct system in promoting bone regeneration following fracture.

12.
Bull Cancer ; 98(7): E62-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21708514

RESUMO

Osteosarcoma is one of the most prevalent primary bone tumors. The pathogenesis and molecular development of this tumor remains elusive. The prognosis is unfavorable due to lack of effective treatment methods. Recent advances in the epigenetics have brought a profound impact on the understanding of molecular mechanisms that lead to osteosarcoma. In this review, we summarized the current literature on epigenetic changes that are thought to contribute to the carcinogenesis of osteosarcoma, and discussed the potential diagnostic and therapeutic applications as well as future areas of research.


Assuntos
Neoplasias Ósseas/genética , Metilação de DNA/genética , Epigênese Genética/fisiologia , Histonas/genética , Osteossarcoma/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/tratamento farmacológico , Metilação de DNA/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Marcadores Genéticos , Humanos , Nucleosídeos/antagonistas & inibidores , Osteossarcoma/diagnóstico , Osteossarcoma/tratamento farmacológico
13.
Dalton Trans ; 39(13): 3227-32, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20449451

RESUMO

A couple of enantiomers of novel chiral macrocyclic imines based on R/S-camphor were asymmetrically synthesized. Through the chiral macrocyclic ligands, enantiomers of nickel(II) coordination compounds were obtained. The chirality of the ligand was transferred to the nickel atom upon coordination, leading to predetermined configuration. The chiral ligands and corresponding nickel coordination compounds were characterized by UV, IR, CD, VCD spectra and single crystal X-ray crystallography. The structural and spectroscopic properties were further investigated by DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...