Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923717

RESUMO

In this research, the tribological properties of different microstructures of medium carbon steel produced by either an austempered process or quenched-tempered process are investigated. The as-received samples with annealed microstructure (spherodized) are austempered to obtain a bainite microstructure or quenched-tempered to obtain a tempered martensite microstructure. The tribological performance of these microstructures was studied using a ball-on-disk UMT3 tribometer. The results indicated that both bainite microstructures and tempered-martensite microstructures produced better wear resistance than pearlite microstructures. At the same hardness level, the austempered disk specimens have less cracking due to higher fracture toughness compared to quenched and tempered steel. For the disks, tempered martensite microstructures produced more plastic deformation compared with bainite microstructures. Mild abrasive wear was observed on the harder disks, however, smearing wear was observed on the softer disks. Adhered debris particles were observed on the balls.

2.
Materials (Basel) ; 13(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824570

RESUMO

The structural properties of GeSn thin films with different Sn concentrations and thicknesses grown on Ge (001) by molecular beam epitaxy (MBE) and on Ge-buffered Si (001) wafers by chemical vapor deposition (CVD) were analyzed through high resolution X-ray diffraction and cross-sectional transmission electron microscopy. Two-dimensional reciprocal space maps around the asymmetric (224) reflection were collected by X-ray diffraction for both the whole structures and the GeSn epilayers. The broadenings of the features of the GeSn epilayers with different relaxations in the ω direction, along the ω-2θ direction and parallel to the surface were investigated. The dislocations were identified by transmission electron microscopy. Threading dislocations were found in MBE grown GeSn layers, but not in the CVD grown ones. The point defects and dislocations were two possible reasons for the poor optical properties in the GeSn alloys grown by MBE.

3.
Nanoscale Res Lett ; 12(1): 472, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28759987

RESUMO

We theoretically investigate highly tensile-strained Ge nanowires laterally on GaSb. Finite element method has been used to simulate the residual elastic strain in the Ge nanowire. The total energy increment including strain energy, surface energy, and edge energy before and after Ge deposition is calculated in different situations. The result indicates that the Ge nanowire on GaSb is apt to grow along 〈100〉 rather than 〈110〉 in the two situations and prefers to be exposed by {105} facets when deposited a small amount of Ge but to be exposed by {110} when the amount of Ge exceeds a critical value. Furthermore, the conduction band minima in Γ-valley at any position in both situations exhibits lower values than those in L-valley, leading to direct bandgap transition in Ge nanowire. For the valence band, the light hole band maxima at Γ-point is higher than the heavy hole band maxima at any position and even higher than the conduction band minima for the hydrostatic strain more than ∼5.0%, leading to a negative bandgap. In addition, both electron and hole mobility can be enhanced by owing to the decrease of the effective mass under highly tensile strain. The results suggest that biaxially tensile-strained Ge nanowires hold promising properties in device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...